Water Treatment Plant Design 5/E

Author: American Water Works Association,American Society of Civil Engineers

Publisher: McGraw Hill Professional

ISBN: 0071745726

Category: Technology & Engineering

Page: 1376

View: 5892

DOWNLOAD NOW »

THE MOST TRUSTED AND UP-TO-DATE WATER TREATMENT PLANT DESIGN REFERENCE Thoroughly revised to cover the latest standards, technologies, regulations, and sustainability practices, Water Treatment Plant Design, Fifth Edition, offers comprehensive guidance on modernizing existing water treatment facilities and planning new ones. This authoritative resource discusses the organization and execution of a water treatment plant project--from planning and permitting through design, construction, and start-up. A joint publication of the American Water Works Association (AWWA) and the American Society of Civil Engineers (ASCE), this defi nitive guide contains contributions from renowned international experts. COVERAGE INCLUDES: Sustainability Master planning and treatment process selection Design and construction Intake facilities Aeration and air stripping Mixing, coagulation, and flocculation Clarification Slow sand and diatomaceous earth filtration Oxidation and disinfection Ultraviolet disinfection Precipitative softening Membrane processes Activated carbon adsorption Biological processes Process residuals Pilot plant design and construction Chemical systems Hydraulics Site selection and plant arrangement Environmental impacts and project permitting Architectural design HVAC, plumbing, and air supply systems Structural design Process instrumentation and controls Electrical systems Design reliability features Operations and maintenance considerations during plant design Staff training and plant start-up Water system security and preparedness Construction cost estimating
Release

Design of Municipal Wastewater Treatment Plants MOP 8, Fifth Edition

Author: Water Environment Federation

Publisher: McGraw Hill Professional

ISBN: 0071663584

Category: Design

Page: 2600

View: 8382

DOWNLOAD NOW »

Contemporary Municipal Wastewater Treatment Plant Design Methods Fully revised and updated, this three-volume set from the Water Environment Federation and the Environmental and Water Resources Institute of the American Society of Civil Engineers presents the current plant planning, configuration, and design practices of wastewater engineering professionals, augmented by performance information from operating facilities. Design of Municipal Wastewater Treatment Plants, Fifth Edition, includes design approaches that reflect the experience of more than 300 authors and reviewers from around the world. Coverage includes: Integrated facility design Sustainability and energy management Plant hydraulics and pumping Odor control and air emissions Thoroughly updated information on biofilm reactors Biological, physical, and chemical liquid treatment Membrane bioreactors, IFAS, and other integrated biological processes Nutrient removal Sidestream treatment Wastewater disinfection Solids minimization, treatment, and stabilization, including thermal processing Biosolids use and disposal
Release

Water Treatment Plant Design, Fifth Edition

Author: American Water Works Association,American Society of Civil Engineers

Publisher: McGraw Hill Professional

ISBN: 0071745734

Category: Technology & Engineering

Page: 912

View: 3292

DOWNLOAD NOW »

THE MOST TRUSTED AND UP-TO-DATE WATER TREATMENT PLANT DESIGN REFERENCE Thoroughly revised to cover the latest standards, technologies, regulations, and sustainability practices, Water Treatment Plant Design, Fifth Edition, offers comprehensive guidance on modernizing existing water treatment facilities and planning new ones. This authoritative resource discusses the organization and execution of a water treatment plant project--from planning and permitting through design, construction, and start-up. A joint publication of the American Water Works Association (AWWA) and the American Society of Civil Engineers (ASCE), this defi nitive guide contains contributions from renowned international experts. COVERAGE INCLUDES: Sustainability Master planning and treatment process selection Design and construction Intake facilities Aeration and air stripping Mixing, coagulation, and flocculation Clarification Slow sand and diatomaceous earth filtration Oxidation and disinfection Ultraviolet disinfection Precipitative softening Membrane processes Activated carbon adsorption Biological processes Process residuals Pilot plant design and construction Chemical systems Hydraulics Site selection and plant arrangement Environmental impacts and project permitting Architectural design HVAC, plumbing, and air supply systems Structural design Process instrumentation and controls Electrical systems Design reliability features Operations and maintenance considerations during plant design Staff training and plant start-up Water system security and preparedness Construction cost estimating
Release

Wastewater Treatment Plants

Planning, Design, and Operation, Second Edition

Author: Syed R. Qasim

Publisher: Routledge

ISBN: 1351405160

Category: Technology & Engineering

Page: 1128

View: 8177

DOWNLOAD NOW »

Step-by-step procedures for planning, design, construction and operation: * Health and environment * Process improvements * Stormwater and combined sewer control and treatment * Effluent disposal and reuse * Biosolids disposal and reuse * On-site treatment and disposal of small flows * Wastewater treatment plants should be designed so that the effluent standards and reuse objectives, and biosolids regulations can be met with reasonable ease and cost. The design should incorporate flexibility for dealing with seasonal changes, as well as long-term changes in wastewater quality and future regulations. Good planning and design, therefore, must be based on five major steps: characterization of the raw wastewater quality and effluent, pre-design studies to develop alternative processes and selection of final process train, detailed design of the selected alternative, contraction, and operation and maintenance of the completed facility. Engineers, scientists, and financial analysts must utilize principles from a wide range of disciplines: engineering, chemistry, microbiology, geology, architecture, and economics to carry out the responsibilities of designing a wastewater treatment plant. The objective of this book is to present the technical and nontechnical issues that are most commonly addressed in the planning and design reports for wastewater treatment facilities prepared by practicing engineers. Topics discussed include facility planning, process description, process selection logic, mass balance calculations, design calculations, and concepts for equipment sizing. Theory, design, operation and maintenance, trouble shooting, equipment selection and specifications are integrated for each treatment process. Thus delineation of such information for use by students and practicing engineers is the main purpose of this book.
Release

Water Treatment Unit Processes

Physical and Chemical

Author: David W. Hendricks

Publisher: CRC Press

ISBN: 1420003437

Category: Technology & Engineering

Page: 1266

View: 1065

DOWNLOAD NOW »

The unit process approach, common in the field of chemical engineering, was introduced about 1962 to the field of environmental engineering. An understanding of unit processes is the foundation for continued learning and for designing treatment systems. The time is ripe for a new textbook that delineates the role of unit process principles in environmental engineering. Suitable for a two-semester course, Water Treatment Unit Processes: Physical and Chemical provides the grounding in the underlying principles of each unit process that students need in order to link theory to practice. Bridging the gap between scientific principles and engineering practice, the book covers approaches that are common to all unit processes as well as principles that characterize each unit process. Integrating theory into algorithms for practice, Professor Hendricks emphasizes the fundamentals, using simple explanations and avoiding models that are too complex mathematically, allowing students to assimilate principles without getting sidelined by excess calculations. Applications of unit processes principles are illustrated by example problems in each chapter. Student problems are provided at the end of each chapter; the solutions manual can be downloaded from the CRC Press Web site. Excel spreadsheets are integrated into the text as tables designated by a "CD" prefix. Certain spreadsheets illustrate the idea of "scenarios" that emphasize the idea that design solutions depend upon assumptions and the interactions between design variables. The spreadsheets can be downloaded from the CRC web site. The book has been designed so that each unit process topic is self-contained, with sidebars and examples throughout the text. Each chapter has subheadings, so that students can scan the pages and identify important topics with little effort. Problems, references, and a glossary are found at the end of each chapter. Most chapters contain downloadable Excel spreadsheets integrated into the text and appendices with additional information. Appendices at the end of the book provide useful reference material on various topics that support the text. This design allows students at different levels to easily navigate through the book and professors to assign pertinent sections in the order they prefer. The book gives your students an understanding of the broader aspects of one of the core areas of the environmental engineering curriculum and knowledge important for the design of treatment systems.
Release

Energy Conservation

Author: Azni Zain Ahmed

Publisher: BoD – Books on Demand

ISBN: 9535108298

Category: Technology & Engineering

Page: 252

View: 6080

DOWNLOAD NOW »

This book covers the areas of fundamentals in energy conservation and its applications in selected industries. There are nine chapters in this book which have been written by leading experts in energy from all over the world. The topics range from energy fundamentals from cosmic radiation, tidal waves and dams. The chapters examine the potential of utilizing energy from sustainable resources and how energy consumption may be conserved from various new technologies. The contents of this book include space energy, barotropic and baroclinic tidal energy, understanding energy conservation in biological context, Earth shelters, hydro power, biofuel from groundnut oil and low energy consumption in industrial production. This book is suitable as a reference for students, educators, researchers, scientists, engineers and energy practitioners. It will also be a useful for the understanding of energy fundamentals, design and applications.
Release

Gas Purification

Author: Arthur L Kohl,Richard Nielsen

Publisher: Elsevier

ISBN: 9780080507200

Category: Science

Page: 900

View: 4345

DOWNLOAD NOW »

This massively updated and expanded fifth edition is the most complete, authoritative engineering treatment of the dehydration and gas purification processes used in industry today. Of great value to design and operations engineers, it gives practical process and equipment design descriptions, basic data, plant performance results, and other detailed information on gas purification processes and hardware. This latest edition incorporates all significant advances in the field since 1985. You will find major new chapters on the rapidly expanding technologies of nitrogen oxide control, with discussions of regulatory requirements and available processes; absorption in physical solvents, covering single component and mixed solvent systems; and membrane permeation, with emphasis on the gas purification applications of membrane units. In addition, new sections cover areas of strong current interest, particularly liquid hydrocarbon treating, Claus plant tail gas treating, thermal oxidation of volatile organic compounds, and sulfur scavenging processes. This volume brings you expanded coverage of alkanolamines for hydrogen sulfide and carbon dioxide removal, the removal and use of ammonia in gas purification, the use of alkaline salt solutions for acid gas removal, and the use of water to absorb gas impurities. The basic technologies and all significant advances in the following areas are thoroughly described: sulfur dioxide removal and recovery processes, processes for converting hydrogen sulfide to sulfur, liquid phase oxidation processes for hydrogen sulfide removal, the absorption of water vapor by dehydrating solutions, gas dehydration and purification by adsorption, and the catalytic and thermal conversion of gas impurities.
Release