Time-Dependent Density-Functional Theory

Concepts and Applications

Author: Carsten Ullrich

Publisher: Oxford University Press

ISBN: 0199563020

Category: Science

Page: 526

View: 7806

DOWNLOAD NOW »

Time-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.
Release

Fundamentals of Time-Dependent Density Functional Theory

Author: Miguel A.L. Marques,Neepa T. Maitra,Fernando M.S. Nogueira,E.K.U. Gross,Angel Rubio

Publisher: Springer Science & Business Media

ISBN: 3642235182

Category: Science

Page: 559

View: 9483

DOWNLOAD NOW »

There have been many significant advances in time-dependent density functional theory over recent years, both in enlightening the fundamental theoretical basis of the theory, as well as in computational algorithms and applications. This book, as successor to the highly successful volume Time-Dependent Density Functional Theory (Lect. Notes Phys. 706, 2006) brings together for the first time all recent developments in a systematic and coherent way. First, a thorough pedagogical presentation of the fundamental theory is given, clarifying aspects of the original proofs and theorems, as well as presenting fresh developments that extend the theory into new realms—such as alternative proofs of the original Runge-Gross theorem, open quantum systems, and dispersion forces to name but a few. Next, all of the basic concepts are introduced sequentially and building in complexity, eventually reaching the level of open problems of interest. Contemporary applications of the theory are discussed, from real-time coupled-electron-ion dynamics, to excited-state dynamics and molecular transport. Last but not least, the authors introduce and review recent advances in computational implementation, including massively parallel architectures and graphical processing units. Special care has been taken in editing this volume as a multi-author textbook, following a coherent line of thought, and making all the relevant connections between chapters and concepts consistent throughout. As such it will prove to be the text of reference in this field, both for beginners as well as expert researchers and lecturers teaching advanced quantum mechanical methods to model complex physical systems, from molecules to nanostructures, from biocomplexes to surfaces, solids and liquids. From the reviews of LNP 706: “This is a well structured text, with a common set of notations and a single comprehensive and up-to-date list of references, rather than just a compilation of research articles. Because of its clear organization, the book can be used by novices (basic knowledge of ground-state DFT is assumed) and experienced users of TD-DFT, as well as developers in the field.” (Anna I. Krylov, Journal of the American Chemical Society, Vol. 129 (21), 2007) “This book is a treasure of knowledge and I highly recommend it. Although it is a compilation of chapters written by many different leading researchers involved in development and application of TDDFT, the contributors have taken great care to make sure the book is pedagogically sound and the chapters complement each other [...]. It is highly accessible to any graduate student of chemistry or physics with a solid grounding in many-particle quantum mechanics, wishing to understand both the fundamental theory as well as the exponentially growing number of applications. [...] In any case, no matter what your background is, it is a must-read and an excellent reference to have on your shelf.” Amazon.com, October 15, 2008, David Tempel (Cambridge, MA)
Release

Computational Methods in Catalysis and Materials Science

An Introduction for Scientists and Engineers

Author: Rutger A. van Santen,Philippe Sautet

Publisher: John Wiley & Sons

ISBN: 3527802665

Category: Technology & Engineering

Page: 472

View: 6224

DOWNLOAD NOW »

This practical guide describes the basic computational methodologies for catalysis and materials science at an introductory level, presenting the methods with relevant applications, such as spectroscopic properties, chemical reactivity and transport properties of catalytically interesting materials. Edited and authored by internationally recognized scientists, the text provides examples that may be considered and followed as state-of-the art.
Release

A Primer in Density Functional Theory

Author: Carlos Fiolhais,Fernando Nogueira,Miguel A.L. Marques

Publisher: Springer

ISBN: 3540370722

Category: Science

Page: 258

View: 7669

DOWNLOAD NOW »

Density functional theory (DFT) is by now a well-established method for tackling the quantum mechanics of many-body systems. Originally applied to compute properties of atoms and simple molecules, DFT has quickly become a work horse for more complex applications in the chemical and materials sciences. The present set of lectures, spanning the whole range from basic principles to relativistic and time-dependent extensions of the theory, is the ideal introduction for graduate students or nonspecialist researchers wishing to familiarize themselves with both the basic and most advanced techniques in this field.
Release

Computational Inorganic and Bioinorganic Chemistry

Author: Edward I. Solomon,Robert A. Scott,R. Bruce King

Publisher: Wiley

ISBN: 9780470699973

Category: Science

Page: 614

View: 9788

DOWNLOAD NOW »

Over the past several decades there have been major advances in our ability to computationally evaluate the electronic structure of inorganic molecules, particularly transition metal systems. This advancement is due to the Moore’s Law increase in computing power as well as the impact of density functional theory (DFT) and its implementation in commercial and freeware programs for quantum chemical calculations. Improved pure and hybrid density functionals are allowing DFT calculations with accuracy comparable to high-level Hartree-Fock treatments, and the results of these calculations can now be evaluated by experiment. When calculations are correlated to, and supported by, experimental data they can provide fundamental insight into electronic structure and its contributions to physical properties and chemical reactivity. This interplay continues to expand and contributes to both improved value of experimental results and improved accuracy of computational predictions. The purpose of this EIC Book is to provide state-of-the-art presentations of quantum mechanical and related methods and their applications, written by many of the leaders in the field. Part 1 of this volume focuses on methods, their background and implementation, and their use in describing bonding properties, energies, transition states and spectroscopic features. Part 2 focuses on applications in bioinorganic chemistry and Part 3 discusses inorganic chemistry, where electronic structure calculations have already had a major impact. This addition to the EIC Book series is of significant value to both experimentalists and theoreticians, and we anticipate that it will stimulate both further development of the methodology and its applications in the many interdisciplinary fields that comprise modern inorganic and bioinorganic chemistry. This volume is also available as part of Encyclopedia of Inorganic Chemistry, 5 Volume Set. This set combines all volumes published as EIC Books from 2007 to 2010, representing areas of key developments in the field of inorganic chemistry published in the Encyclopedia of Inorganic Chemistry. Find out more.
Release

Extended Density Functionals in Nuclear Structure Physics

Author: G. A. Lalazissis,Peter Ring,D. Vretenar

Publisher: Springer Science & Business Media

ISBN: 9783540210306

Category: Science

Page: 376

View: 3744

DOWNLOAD NOW »

The experimental and theoretical investigation of nuclei far from the valley of beta-stability is the main subject of modern nuclear structure research. Although the most successful nuclear structure models are purely phenomenological, they nevertheless exploit basic properties of QCD at low energies. This book focuses on the current efforts to bridge the gap between phenomenology and the principles derived from QCD using the extended density functional approach which is based on the successful DFT methods to tackle similarly complex interacting systems in molecular and condensed matter physics. Conceived as a series of pedagogical lectures, this volume addresses researchers in the field as well as postgraduate students and non-specialized scientists from related areas who seek a high-level but accessible introduction to the subject.
Release

Organic Structure Analysis

Author: Phillip Crews,Jaime Rodríguez,Marcel Jaspars

Publisher: Oxford University Press, USA

ISBN: 9780195336047

Category: Medical

Page: 636

View: 6696

DOWNLOAD NOW »

The most up-to-date integrated spectroscopy text available, Organic Structure Analysis, Second Edition, is the only text that teaches students how to solve structures as they are solved in actual practice. Ideal for advanced undergraduate and graduate courses in organic structure analysis, organic structure identification, and organic spectroscopy, it emphasizes real applications--integrating theory as needed--and introduces students to the latest spectroscopic methods. An Instructor's Resource CD-ROM, which includes all of the figures from the text in electronic format and the solutions to all of the exercises and problems from the text (in an editable Word file format), is also available for adopting professors. Please contact your publisher sales representative. FEATURES * Focus on Structure: Opens with structural elements and then considers the characteristics, advantages, and disadvantages of spectroscopic methods. Includes coverage of the steps used in determining a molecular structure, the limitations to organic structure determination by spectroscopic methods, and an "Organic Structure Analyses Gone Bad" table (all unique to this text) * Practical Organization: Presents the most commonly used methods first, beginning with an overview of strategies, followed by the use of NMR, and then moving on to mass spectrometry, infrared, and ultraviolet * Innovative Real-World Problem-Solving Approach: Follows the actual information flow used by chemists to solve molecular structures, as opposed to the standard methods-based approach of other texts * Unique Chapter (12) Featuring 51 Structure-Solving Problems: Each problem emphasizes a different method; the problems increase in difficulty throughout the chapter, successively building on students' knowledge and requiring them to integrate multiple methods to identify molecules. NEW TO THE SECOND EDITION * Coverage of the Latest Instrumental and Computational Advances: Examines the use of modern instruments, data processing, and computer-assisted structure elucidation techniques * Updated and Expanded Treatment of NMR (Chapters 2-5): An extensively revised Chapter 5 discusses multi-pulse 1D and 2D NMR methods, 1D TOCSY and 1D NOESY sequences, and using NOESY and ROESY in determining relative stereochemistry and solution conformation. * Additional Coverage of Mass Spectrometry: A new chapter (7) expands the discussion of mass spectrometry to three chapters (6-8). Topics include cutting-edge MS instrumentation and new information on tandem MS techniques, combining NMR with MS, large-molecule MS, chemo-informatics, and more. * More Exercises and Improved Spectra: The second edition includes 25% more problems than the previous edition (279 total). In addition, many of the spectra, including all of those presented in Chapters 11 and 12, have been reprocessed or reacquired for greater clarity.
Release

Density Functional Theory

An Advanced Course

Author: Eberhard Engel,Reiner M. Dreizler

Publisher: Springer Science & Business Media

ISBN: 9783642140907

Category: Science

Page: 531

View: 7744

DOWNLOAD NOW »

Density Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems. This work offers a rigorous and detailed introduction to the foundations of this theory, up to and including such advanced topics as orbital-dependent functionals as well as both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, the text concentrates on the self-contained presentation of the basics of the most widely used DFT variants: this implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating the strengths and weaknesses of particular approaches or functionals. The structure and content of this book allow a tutorial and modular self-study approach: the reader will find that all concepts of many-body theory which are indispensable for the discussion of DFT - such as the single-particle Green's function or response functions - are introduced step by step, along with the actual DFT material. The same applies to basic notions of solid state theory, such as the Fermi surface of inhomogeneous, interacting systems. In fact, even the language of second quantization is introduced systematically in an Appendix for readers without formal training in many-body theory.
Release

A chemist's guide to density functional theory

Author: Wolfram Koch,Max C. Holthausen

Publisher: Wiley-VCH Verlag GmbH

ISBN: 9783527299188

Category: Science

Page: 294

View: 8684

DOWNLOAD NOW »

Density functional theory (DFT) is a shooting star among quantum chemical techniques and has developed into a major player in the computational chemistry arena within only a decade. In particular, its excellent 'price/performance' ratio has stimulated an ever-growing number of DFT applications in almost all fields of chemistry. However, many use DFT programs as black-box tools without having a quantum theoretical background or a concise knowledge about the strengths and weaknesses of this approach. This text is designed to bridge that gap and to guide the non-expert user through the minefield arising from an uncritical use of DFT methods. "Chemists familiar with conventional quantum mechanics will applaud and benefit greatly from this particulary instructive, thorough and clearly written exposition of density functional theory: its basis, concepts, terms, implementation, and performance in diverse applications. Users of DFT for structure, energy, and molecular property computations, as well as reaction mechanism studies, are guided to the optimum choices of the most effective methods. Well done!" Paul von Ragu? Schleyer
Release