The Data Science Handbook

Author: Field Cady

Publisher: John Wiley & Sons

ISBN: 1119092949

Category: Mathematics

Page: 416

View: 1240

DOWNLOAD NOW »

A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.
Release

The Data Science Handbook

Advice and Insights from 25 Amazing Data Scientists

Author: Carl Shan,Henry Wang,William Chen,Max Song

Publisher: N.A

ISBN: 9780692434871

Category:

Page: N.A

View: 1570

DOWNLOAD NOW »

The Data Science Handbook is a curated collection of 25 candid, honest and insightful interviews conducted with some of the world's top data scientists.In this book, you'll hear how the co-creator of the term 'data scientist' thinks about career and personal success. You'll hear from a young woman who created her own data scientist curriculum, subsequently landing her a role in the field. Readers of this book will be left with war stories, wisdom and
Release

Python Data Science Handbook, Jake VanderPlas, 2017

Data Science

Author: O'Reilly Media, Inc

Publisher: Bukupedia

ISBN: 1491912057

Category: Computers

Page: 548

View: 7693

DOWNLOAD NOW »

This is a book about doing data science with Python, which immediately begs the question: what is data science? It’s a surprisingly hard definition to nail down, especially given how ubiquitous the term has become. Vocal critics have variously dismissed the term as a superfluous label (after all, what science doesn’t involve data?) or a simple buzzword that only exists to salt résumés and catch the eye of overzealous tech recruiters. In my mind, these critiques miss something important. Data science, despite its hypeladen veneer, is perhaps the best label we have for the cross-disciplinary set of skills that are becoming increasingly important in many applications across industry and academia. This cross-disciplinary piece is key: in my mind, the best existing definition of data science is illustrated by Drew Conway’s Data Science Venn Diagram, first published on his blog in September 2010 While some of the intersection labels are a bit tongue-in-cheek, this diagram captures the essence of what I think people mean when they say “data science”: it is fundamentally an interdisciplinary subject. Data science comprises three distinct and overlapping areas: the skills of a statistician who knows how to model and summarize datasets (which are growing ever larger); the skills of a computer scientist who can design and use algorithms to efficiently store, process, and visualize this data; and the domain expertise—what we might think of as “classical” training in a subject—necessary both to formulate the right questions and to put their answers in context. With this in mind, I would encourage you to think of data science not as a new domain of knowledge to learn, but as a new set of skills that you can apply within your current area of expertise. Whether you are reporting election results, forecasting stock returns, optimizing online ad clicks, identifying microorganisms in microscope photos, seeking new classes of astronomical objects, or working with data in any other field, the goal of this book is to give you the ability to ask and answer new questions about your chosen subject area. Who Is This Book For? In my teaching both at the University of Washington and at various tech-focused conferences and meetups, one of the most common questions I have heard is this: “how should I learn Python?” The people asking are generally technically minded students, developers, or researchers, often with an already strong background in writing code and using computational and numerical tools. Most of these folks don’t want to learn Python per se, but want to learn the language with the aim of using it as a tool for data-intensive and computational science. While a large patchwork of videos, blog posts, and tutorials for this audience is available online, I’ve long been frustrated by the lack of a single good answer to this question; that is what inspired this book. The book is not meant to be an introduction to Python or to programming in general; I assume the reader has familiarity with the Python language, including defining functions, assigning variables, calling methods of objects, controlling the flow of a program, and other basic tasks. Instead, it is meant to help Python users learn to use Python’s data science stack—libraries such as IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and related tools—to effectively store, manipulate, and gain insight from data. Why Python? Python has emerged over the last couple decades as a first-class tool for scientific computing tasks, including the analysis and visualization of large datasets. This may have come as a surprise to early proponents of the Python language: the language itself was not specifically designed with data analysis or scientific computing in mind. The usefulness of Python for data science stems primarily from the large and active ecosystem of third-party packages: NumPy for manipulation of homogeneous arraybased data, Pandas for manipulation of heterogeneous and labeled data, SciPy for common scientific computing tasks, Matplotlib for publication-quality visualizations, IPython for interactive execution and sharing of code, Scikit-Learn for machine learning, and many more tools that will be mentioned in the following pages. If you are looking for a guide to the Python language itself, I would suggest the sister project to this book, A Whirlwind Tour of the Python Language. This short report provides a tour of the essential features of the Python language, aimed at data scientists who already are familiar with one or more other programming languages. Python 2 Versus Python 3 This book uses the syntax of Python 3, which contains language enhancements that are not compatible with the 2.x series of Python. Though Python 3.0 was first released in 2008, adoption has been relatively slow, particularly in the scientific and web development communities. This is primarily because it took some time for many of the essential third-party packages and toolkits to be made compatible with the new language internals. Since early 2014, however, stable releases of the most important tools in the data science ecosystem have been fully compatible with both Python 2 and 3, and so this book will use the newer Python 3 syntax. However, the vast majority of code snippets in this book will also work without modification in Python 2: in cases where a Py2-incompatible syntax is used, I will make every effort to note it explicitly. Outline of This Book Each chapter of this book focuses on a particular package or tool that contributes a fundamental piece of the Python data science story. IPython and Jupyter (Chapter 1) These packages provide the computational environment in which many Pythonusing data scientists work. NumPy (Chapter 2) This library provides the ndarray object for efficient storage and manipulation of dense data arrays in Python. Pandas (Chapter 3) This library provides the DataFrame object for efficient storage and manipulation of labeled/columnar data in Python. Matplotlib (Chapter 4) This library provides capabilities for a flexible range of data visualizations in Python.
Release

Python Data Science Handbook

Essential Tools for Working with Data

Author: Jake VanderPlas

Publisher: "O'Reilly Media, Inc."

ISBN: 1491912138

Category: Computers

Page: 548

View: 772

DOWNLOAD NOW »

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Release

The Decision Maker's Handbook to Data Science

A Guide for Non-Technical Executives, Managers, and Founders

Author: Stylianos Kampakis

Publisher: Apress

ISBN: 1484254945

Category: Computers

Page: 156

View: 657

DOWNLOAD NOW »

Data science is expanding across industries at a rapid pace, and the companies first to adopt best practices will gain a significant advantage. To reap the benefits, decision makers need to have a confident understanding of data science and its application in their organization. It is easy for novices to the subject to feel paralyzed by intimidating buzzwords, but what many don’t realize is that data science is in fact quite multidisciplinary—useful in the hands of business analysts, communications strategists, designers, and more. With the second edition of The Decision Maker’s Handbook to Data Science, you will learn how to think like a veteran data scientist and approach solutions to business problems in an entirely new way. Author Stylianos Kampakis provides you with the expertise and tools required to develop a solid data strategy that is continuously effective. Ethics and legal issues surrounding data collection and algorithmic bias are some common pitfalls that Kampakis helps you avoid, while guiding you on the path to build a thriving data science culture at your organization. This updated and revised second edition, includes plenty of case studies, tools for project assessment, and expanded content for hiring and managing data scientists Data science is a language that everyone at a modern company should understand across departments. Friction in communication arises most often when management does not connect with what a data scientist is doing or how impactful data collection and storage can be for their organization. The Decision Maker’s Handbook to Data Science bridges this gap and readies you for both the present and future of your workplace in this engaging, comprehensive guide. What You Will Learn Understand how data science can be used within your business. Recognize the differences between AI, machine learning, and statistics. Become skilled at thinking like a data scientist, without being one. Discover how to hire and manage data scientists. Comprehend how to build the right environment in order to make your organization data-driven. Who This Book Is For Startup founders, product managers, higher level managers, and any other non-technical decision makers who are thinking to implement data science in their organization and hire data scientists. A secondary audience includes people looking for a soft introduction into the subject of data science.
Release

Handbook of Data Science Approaches for Biomedical Engineering

Author: Valentina Emilia Balas,Vijender Kumar Solanki,Raghvendra Kumar,Manju Khari

Publisher: Academic Press

ISBN: 0128183195

Category: Science

Page: 318

View: 4399

DOWNLOAD NOW »

Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Release

Python Data Science Handbook

Essential Tools for Working with Data

Author: Jacob T. Vanderplas,Jake VanderPlas

Publisher: O'Reilly Media

ISBN: 9781491912058

Category: Computers

Page: 529

View: 3636

DOWNLOAD NOW »

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all--IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Release

Research Handbook in Data Science and Law

Author: Vanessa Mak,Eric Tjong Tjin Tai,Anna Berlee

Publisher: Edward Elgar Publishing

ISBN: 1788111303

Category: Language Arts & Disciplines

Page: 512

View: 2363

DOWNLOAD NOW »

The use of data in society has seen an exponential growth in recent years. Data science, the field of research concerned with understanding and analyzing data, aims to find ways to operationalize data so that it can be beneficially used in society, for example in health applications, urban governance or smart household devices. The legal questions that accompany the rise of new, data-driven technologies however are underexplored. This book is the first volume that seeks to map the legal implications of the emergence of data science. It discusses the possibilities and limitations imposed by the current legal framework, considers whether regulation is needed to respond to problems raised by data science, and which ethical problems occur in relation to the use of data. It also considers the emergence of Data Science and Law as a new legal discipline.
Release

Handbook of Data Recording, Maintenance, and Management for the Biomedical Sciences

Author: Shayne C. Gad,Stephanie M. Taulbee

Publisher: CRC Press

ISBN: 9780849301377

Category: Science

Page: 96

View: 4362

DOWNLOAD NOW »

The Handbook of Data Recording, Maintenance, and Management for the Biomedical Sciences explains how to maintain a scientific log that will withstand peer, federal, and other reviewing agencies' scrutiny. This is a timely publication as the maintenance of a log becomes an increasingly more important issue. It covers data monitoring, recording and maintenance; quality assurance; and printed forms, and the laws and regulations that impact their design and use.
Release