Stochastic Processes

An Introduction, Third Edition

Author: Peter Watts Jones,Peter Smith

Publisher: CRC Press

ISBN: 1498778127

Category: Mathematics

Page: 255

View: 6883

DOWNLOAD NOW »

Based on a well-established and popular course taught by the authors over many years, Stochastic Processes: An Introduction, Third Edition, discusses the modelling and analysis of random experiments, where processes evolve over time. The text begins with a review of relevant fundamental probability. It then covers gambling problems, random walks, and Markov chains. The authors go on to discuss random processes continuous in time, including Poisson, birth and death processes, and general population models, and present an extended discussion on the analysis of associated stationary processes in queues. The book also explores reliability and other random processes, such as branching, martingales, and simple epidemics. A new chapter describing Brownian motion, where the outcomes are continuously observed over continuous time, is included. Further applications, worked examples and problems, and biographical details have been added to this edition. Much of the text has been reworked. The appendix contains key results in probability for reference. This concise, updated book makes the material accessible, highlighting simple applications and examples. A solutions manual with fully worked answers of all end-of-chapter problems, and Mathematica® and R programs illustrating many processes discussed in the book, can be downloaded from crcpress.com.
Release

Stochastic Processes

From Applications to Theory

Author: Pierre Del Moral,Spiridon Penev

Publisher: CRC Press

ISBN: 1498701841

Category: Mathematics

Page: 866

View: 4755

DOWNLOAD NOW »

Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.
Release

Stationary Stochastic Processes

Theory and Applications

Author: Georg Lindgren

Publisher: CRC Press

ISBN: 146655780X

Category: Mathematics

Page: 375

View: 6923

DOWNLOAD NOW »

Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.
Release

Theory of Stochastic Objects

Probability, Stochastic Processes and Inference

Author: Athanasios Christou Micheas

Publisher: CRC Press

ISBN: 146651521X

Category: Mathematics

Page: 378

View: 1821

DOWNLOAD NOW »

This book defines and investigates the concept of a random object. To accomplish this task in a natural way, it brings together three major areas; statistical inference, measure-theoretic probability theory and stochastic processes. This point of view has not been explored by existing textbooks; one would need material on real analysis, measure and probability theory, as well as stochastic processes - in addition to at least one text on statistics- to capture the detail and depth of material that has gone into this volume. Presents and illustrates ‘random objects’ in different contexts, under a unified framework, starting with rudimentary results on random variables and random sequences, all the way up to stochastic partial differential equations. Reviews rudimentary probability and introduces statistical inference, from basic to advanced, thus making the transition from basic statistical modeling and estimation to advanced topics more natural and concrete. Compact and comprehensive presentation of the material that will be useful to a reader from the mathematics and statistical sciences, at any stage of their career, either as a graduate student, an instructor, or an academician conducting research and requiring quick references and examples to classic topics. Includes 378 exercises, with the solutions manual available on the book's website. 121 illustrative examples of the concepts presented in the text (many including multiple items in a single example). The book is targeted towards students at the master’s and Ph.D. levels, as well as, academicians in the mathematics, statistics and related disciplines. Basic knowledge of calculus and matrix algebra is required. Prior knowledge of probability or measure theory is welcomed but not necessary.
Release

Theory and Modeling of Stochastic Objects

Point Processes to Random Sets

Author: Athanasios Christou Micheas

Publisher: Chapman and Hall/CRC

ISBN: 9781466515208

Category: Mathematics

Page: 416

View: 9016

DOWNLOAD NOW »

This book defines and investigates the concept of a random object. To accomplish this task in a natural way, it brings together three major areas; statistical inference, measure-theoretic probability theory and stochastic processes. This point of view has not been explored by existing textbooks. One would need to use one book on Real Analysis, one on Measure and/or Probability theory, one in Stochastic processes, and at least one on Statistics to capture the detail and depth of material that has gone into this text. The book is targeted towards students at the master's and Ph.D. levels, as well as, academicians in the mathematics, statistics and related disciplines. Basic knowledge of calculus and matrix algebra is required. Prior knowledge of probability or measure theory is welcomed but not necessary.
Release

Modeling and Analysis of Stochastic Systems

Author: Vidyadhar G. Kulkarni

Publisher: CRC Press

ISBN: 9780412049910

Category: Business & Economics

Page: 634

View: 7680

DOWNLOAD NOW »

This practical text aims to enable students in engineering, business, operations research, public policy, and computer science to model and analyze stochastic systems. The major classes of useful stochastic processes - discrete and continuous time Markov chains, renewal processes, regenerative processes, and Markov regenerative processes - are presented, with an emphasis on modelling real-life situations with stochastic elements and analyzing the resulting stochastic model.
Release

Stochastic Geometry

Modern Research Frontiers

Author: David Coupier

Publisher: Springer

ISBN: 3030135470

Category: Stochastic geometry

Page: 232

View: 1120

DOWNLOAD NOW »

This volume offers a unique and accessible overview of the most active fields in Stochastic Geometry, up to the frontiers of recent research. Since 2014, the yearly meeting of the French research structure GDR GeoSto has been preceded by two introductory courses. This book contains five of these introductory lectures. The first chapter is a historically motivated introduction to Stochastic Geometry which relates four classical problems (the Buffon needle problem, the Bertrand paradox, the Sylvester four-point problem and the bicycle wheel problem) to current topics. The remaining chapters give an application motivated introduction to contemporary Stochastic Geometry, each one devoted to a particular branch of the subject: understanding spatial point patterns through intensity and conditional intensities; stochastic methods for image analysis; random fields and scale invariance; and the theory of Gibbs point processes. Exposing readers to a rich theory, this book will encourage further exploration of the subject and its wide applications. .
Release

Modeling and Analysis of Stochastic Systems, Third Edition

Author: Vidyadhar G. Kulkarni

Publisher: CRC Press

ISBN: 1498756727

Category: Business & Economics

Page: 606

View: 7161

DOWNLOAD NOW »

Building on the author’s more than 35 years of teaching experience, Modeling and Analysis of Stochastic Systems, Third Edition, covers the most important classes of stochastic processes used in the modeling of diverse systems. For each class of stochastic process, the text includes its definition, characterization, applications, transient and limiting behavior, first passage times, and cost/reward models. The third edition has been updated with several new applications, including the Google search algorithm in discrete time Markov chains, several examples from health care and finance in continuous time Markov chains, and square root staffing rule in Queuing models. More than 50 new exercises have been added to enhance its use as a course text or for self-study. The sequence of chapters and exercises has been maintained between editions, to enable those now teaching from the second edition to use the third edition. Rather than offer special tricks that work in specific problems, this book provides thorough coverage of general tools that enable the solution and analysis of stochastic models. After mastering the material in the text, readers will be well-equipped to build and analyze useful stochastic models for real-life situations.
Release

Stochastic Modeling of Scientific Data

Author: Peter Guttorp,Vladimir N. Minin

Publisher: CRC Press

ISBN: 1351413651

Category: Mathematics

Page: 384

View: 8829

DOWNLOAD NOW »

Stochastic Modeling of Scientific Data combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models in a clear, thoughtful and succinct manner. The distinguishing feature of this work is that, in addition to probability theory, it contains statistical aspects of model fitting and a variety of data sets that are either analyzed in the text or used as exercises. Markov chain Monte Carlo methods are introduced for evaluating likelihoods in complicated models and the forward backward algorithm for analyzing hidden Markov models is presented. The strength of this text lies in the use of informal language that makes the topic more accessible to non-mathematicians. The combinations of hard science topics with stochastic processes and their statistical inference puts it in a new category of probability textbooks. The numerous examples and exercises are drawn from astronomy, geology, genetics, hydrology, neurophysiology and physics.
Release

Stable Non-Gaussian Self-Similar Processes with Stationary Increments

Author: Vladas Pipiras,Murad S. Taqqu

Publisher: Springer

ISBN: 3319623311

Category: Mathematics

Page: 135

View: 3693

DOWNLOAD NOW »

This book provides a self-contained presentation on the structure of a large class of stable processes, known as self-similar mixed moving averages. The authors present a way to describe and classify these processes by relating them to so-called deterministic flows. The first sections in the book review random variables, stochastic processes, and integrals, moving on to rigidity and flows, and finally ending with mixed moving averages and self-similarity. In-depth appendices are also included. This book is aimed at graduate students and researchers working in probability theory and statistics.
Release