Quantum Theory for Mathematicians

Author: Brian C. Hall

Publisher: Springer Science & Business Media

ISBN: 1461471168

Category: Science

Page: 554

View: 7840

DOWNLOAD NOW »

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Release

Quantum Mechanics for Mathematicians

Author: Leon Armenovich Takhtadzhi͡an

Publisher: American Mathematical Soc.

ISBN: 0821846302

Category: Mathematics

Page: 387

View: 9160

DOWNLOAD NOW »

This book provides a comprehensive treatment of quantum mechanics from a mathematics perspective and is accessible to mathematicians starting with second-year graduate students. It addition to traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin, and it introduces the reader to functional methods in quantum mechanics. This includes the Feynman path integral approach to quantum mechanics, integration in functional spaces, the relation between Feynman and Wiener integrals, Gaussian integration and regularized determinants of differential operators, fermion systems and integration over anticommuting (Grassmann) variables, supersymmetry and localization in loop spaces, and supersymmetric derivation of the Atiyah-Singer formula for the index of the Dirac operator. Prior to this book, mathematicians could find these topics only in physics textbooks and in specialized literature. This book is written in a concise style with careful attention to precise mathematics formulation of methods and results.Numerous problems, from routine to advanced, help the reader to master the subject. In addition to providing a fundamental knowledge of quantum mechanics, this book could also serve as a bridge for studying more advanced topics in quantum physics, among them quantum field theory. Prerequisites include standard first-year graduate courses covering linear and abstract algebra, topology and geometry, and real and complex analysis.
Release

Quantum Theory

A Mathematical Approach

Author: Peter Bongaarts

Publisher: Springer

ISBN: 3319095617

Category: Science

Page: 445

View: 4395

DOWNLOAD NOW »

This book was inspired by the general observation that the great theories of modern physics are based on simple and transparent underlying mathematical structures – a fact not usually emphasized in standard physics textbooks – which makes it easy for mathematicians to understand their basic features. It is a textbook on quantum theory intended for advanced undergraduate or graduate students: mathematics students interested in modern physics, and physics students who are interested in the mathematical background of physics and are dissatisfied with the level of rigor in standard physics courses. More generally, it offers a valuable resource for all mathematicians interested in modern physics, and all physicists looking for a higher degree of mathematical precision with regard to the basic concepts in their field.
Release

Operators and Representation Theory

Canonical Models for Algebras of Operators Arising in Quantum Mechanics

Author: Palle E.T. Jorgensen

Publisher: Courier Dover Publications

ISBN: 0486815722

Category: Science

Page: 304

View: 5164

DOWNLOAD NOW »

Three-part treatment covers background material on definitions, terminology, operators in Hilbert space domains of representations, operators in the enveloping algebra, spectral theory; and covariant representation and connections. 2017 edition.
Release

General Relativity for Mathematicians

Author: R.K. Sachs,H.-H. Wu

Publisher: Springer Science & Business Media

ISBN: 1461299039

Category: Mathematics

Page: 292

View: 6092

DOWNLOAD NOW »

This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).
Release

Coherent States and Their Applications

A Contemporary Panorama

Author: Jean-Pierre Antoine,Fabio Bagarello,Jean-Pierre Gazeau

Publisher: Springer

ISBN: 3319767321

Category: Science

Page: 347

View: 4197

DOWNLOAD NOW »

Coherent states (CS) were originally introduced in 1926 by Schrödinger and rediscovered in the early 1960s in the context of laser physics. Since then, they have evolved into an extremely rich domain that pervades virtually every corner of physics, and have also given rise to a range of research topics in mathematics. The purpose of the 2016 CIRM conference was to bring together leading experts in the field with scientists interested in related topics, to jointly investigate their applications in physics, their various mathematical properties, and their generalizations in many directions. Instead of traditional proceedings, this book presents sixteen longer review-type contributions, which are the outcome of a collaborative effort by many conference participants, subsequently reviewed by independent experts. The book aptly illustrates the diversity of CS aspects, from purely mathematical topics to physical applications, including quantum gravity.
Release

Categories for the Working Mathematician

Author: Saunders Mac Lane

Publisher: Springer Science & Business Media

ISBN: 9780387984032

Category: Mathematics

Page: 314

View: 8415

DOWNLOAD NOW »

Categories for the Working Mathematician begins with foundations, illuminating concepts such as category, functor, natural transformation, and duality. It then continues by extensively illustrating these categorical concepts while presenting applications to more advanced topics. This second edition includes many revisions and additions.
Release

On Graph Approaches to Contextuality and their Role in Quantum Theory

Author: Barbara Amaral,Marcelo Terra Cunha

Publisher: Springer

ISBN: 3319938274

Category: Science

Page: 135

View: 3942

DOWNLOAD NOW »

This book explores two of the most striking features of quantum theory – contextuality and nonlocality – using a formulation based on graph theory. Quantum theory provides a set of rules to predict probabilities of different outcomes in different experimental settings, and both contextuality and nonlocality play a fundamental role in interpreting the outcomes. In this work, the authors highlight how the graph approach can lead to a better understanding of this theory and its applications. After presenting basic definitions and explaining the non-contextuality hypothesis, the book describes contextuality scenarios using compatibility hypergraphs. It then introduces the exclusivity graph approach, which relates a number of important graph-theoretical concepts to contextuality. It also presents open problems such as the so-called Exclusivity Principle, as well as a selection of important topics, like sheaf-theoretical approach, hypergraph approach, and alternative proofs of contextuality.
Release

A Course in Mathematical Logic

Author: Yu.I. Manin

Publisher: Springer Science & Business Media

ISBN: 1475743858

Category: Mathematics

Page: 288

View: 5810

DOWNLOAD NOW »

1. This book is above all addressed to mathematicians. It is intended to be a textbook of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries of the last ten or fifteen years. These include: the independence of the continuum hypothe sis, the Diophantine nature of enumerable sets, the impossibility of finding an algorithmic solution for one or two old problems. All the necessary preliminary material, including predicate logic and the fundamentals of recursive function theory, is presented systematically and with complete proofs. We only assume that the reader is familiar with "naive" set theoretic arguments. In this book mathematical logic is presented both as a part of mathe matics and as the result of its self-perception. Thus, the substance of the book consists of difficult proofs of subtle theorems, and the spirit of the book consists of attempts to explain what these theorems say about the mathematical way of thought. Foundational problems are for the most part passed over in silence. Most likely, logic is capable of justifying mathematics to no greater extent than biology is capable of justifying life. 2. The first two chapters are devoted to predicate logic. The presenta tion here is fairly standard, except that semantics occupies a very domi nant position, truth is introduced before deducibility, and models of speech in formal languages precede the systematic study of syntax.
Release

Semantic Techniques in Quantum Computation

Author: Simon Gay,Ian Mackie

Publisher: Cambridge University Press

ISBN: 052151374X

Category: Computers

Page: 478

View: 511

DOWNLOAD NOW »

Explores quantum computation from the perspective of the branch of theoretical computer science known as semantics.
Release