Quantum Field Theory in a Nutshell

Second Edition

Author: A. Zee

Publisher: Princeton University Press

ISBN: 9781400835324

Category: Science

Page: 608

View: 7638

DOWNLOAD NOW »

Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. This expanded edition features several additional chapters, as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading. The most accessible and comprehensive introductory textbook available Features a fully revised, updated, and expanded text Covers the latest exciting advances in the field Includes new exercises Offers a one-of-a-kind resource for students and researchers Leading universities that have adopted this book include: Arizona State University Boston University Brandeis University Brown University California Institute of Technology Carnegie Mellon College of William & Mary Cornell Harvard University Massachusetts Institute of Technology Northwestern University Ohio State University Princeton University Purdue University - Main Campus Rensselaer Polytechnic Institute Rutgers University - New Brunswick Stanford University University of California - Berkeley University of Central Florida University of Chicago University of Michigan University of Montreal University of Notre Dame Vanderbilt University Virginia Tech University
Release

Quantum Many-Body Physics in a Nutshell

Author: Edward Shuryak

Publisher: Princeton University Press

ISBN: 0691184968

Category: Science

Page: N.A

View: 7456

DOWNLOAD NOW »

The ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates This book provides an essential introduction to the physics of quantum many-body systems, which are at the heart of atomic and nuclear physics, condensed matter, and particle physics. Unlike other textbooks on the subject, it covers topics across a broad range of physical fields—phenomena as well as theoretical tools—and does so in a simple and accessible way. Edward Shuryak begins with Feynman diagrams of the quantum and statistical mechanics of a particle; in these applications, the diagrams are easy to calculate and there are no divergencies. He discusses the renormalization group and illustrates its uses, and covers systems such as weakly and strongly coupled Bose and Fermi gases, electron gas, nuclear matter, and quark-gluon plasmas. Phenomena include Bose condensation and superfluidity. Shuryak also looks at Cooper pairing and superconductivity for electrons in metals, liquid 3He, nuclear matter, and quark-gluon plasma. A recurring topic throughout is topological matter, ranging from ensembles of quantized vortices in superfluids and superconductors to ensembles of colored (QCD) monopoles and instantons in the QCD vacuum. Proven in the classroom, Quantum Many-Body Physics in a Nutshell is the ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates. Teaches students how quantum many-body systems work across many fields of physics Uses path integrals from the very beginning Features the easiest introduction to Feynman diagrams available Draws on the most recent findings, including trapped Fermi and Bose atomic gases Guides students from traditional systems, such as electron gas and nuclear matter, to more advanced ones, such as quark-gluon plasma and the QCD vacuum
Release

Einstein Gravity in a Nutshell

Author: A. Zee

Publisher: Princeton University Press

ISBN: 1400847451

Category: Science

Page: 888

View: 9740

DOWNLOAD NOW »

An ideal introduction to Einstein's general theory of relativity This unique textbook provides an accessible introduction to Einstein's general theory of relativity, a subject of breathtaking beauty and supreme importance in physics. With his trademark blend of wit and incisiveness, A. Zee guides readers from the fundamentals of Newtonian mechanics to the most exciting frontiers of research today, including de Sitter and anti-de Sitter spacetimes, Kaluza-Klein theory, and brane worlds. Unlike other books on Einstein gravity, this book emphasizes the action principle and group theory as guides in constructing physical theories. Zee treats various topics in a spiral style that is easy on beginners, and includes anecdotes from the history of physics that will appeal to students and experts alike. He takes a friendly approach to the required mathematics, yet does not shy away from more advanced mathematical topics such as differential forms. The extensive discussion of black holes includes rotating and extremal black holes and Hawking radiation. The ideal textbook for undergraduate and graduate students, Einstein Gravity in a Nutshell also provides an essential resource for professional physicists and is accessible to anyone familiar with classical mechanics and electromagnetism. It features numerous exercises as well as detailed appendices covering a multitude of topics not readily found elsewhere. Provides an accessible introduction to Einstein's general theory of relativity Guides readers from Newtonian mechanics to the frontiers of modern research Emphasizes symmetry and the Einstein-Hilbert action Covers topics not found in standard textbooks on Einstein gravity Includes interesting historical asides Features numerous exercises and detailed appendices Ideal for students, physicists, and scientifically minded lay readers Solutions manual (available only to teachers)
Release

String Theory in a Nutshell

Second Edition

Author: Elias Kiritsis

Publisher: Princeton University Press

ISBN: 0691155798

Category: Science

Page: 888

View: 9056

DOWNLOAD NOW »

The essential introduction to modern string theory—now fully expanded and revised String Theory in a Nutshell is the definitive introduction to modern string theory. Written by one of the world’s leading authorities on the subject, this concise and accessible book starts with basic definitions and guides readers from classic topics to the most exciting frontiers of research today. It covers perturbative string theory, the unity of string interactions, black holes and their microscopic entropy, the AdS/CFT correspondence and its applications, matrix model tools for string theory, and more. It also includes 600 exercises and serves as a self-contained guide to the literature. This fully updated edition features an entirely new chapter on flux compactifications in string theory, and the chapter on AdS/CFT has been substantially expanded by adding many applications to diverse topics. In addition, the discussion of conformal field theory has been extensively revised to make it more student-friendly. The essential one-volume reference for students and researchers in theoretical high-energy physics Now fully expanded and revised Provides expanded coverage of AdS/CFT and its applications, namely the holographic renormalization group, holographic theories for Yang-Mills and QCD, nonequilibrium thermal physics, finite density physics, and entanglement entropy Ideal for mathematicians and physicists specializing in theoretical cosmology, QCD, and novel approaches to condensed matter systems An online illustration package is available to professors
Release

Quantum Gravity in a Nutshell 1 Second Edition

Author: Balungi Francis

Publisher: SUSP Science Foundation

ISBN: 107222576X

Category: Science

Page: 234

View: 7486

DOWNLOAD NOW »

This Math-Free book is a good introduction to quantum gravity and has a lot of interesting history about the development of the theory since 1899. It's an informal introduction to a very difficult and doubtfully intelligible theory doubted even by its most ingenious contributors. The reader should expect that he/she will have to concentrate hard on what Balungi says but the rewards are significant. He is a talented physicist and a good writer. If you read it carefully and stop to think about the message as it unfolds then you will get a worthwhile if imperfect picture of what the theory is saying and how it was invented, It's buried treasure and you will have to do some digging. It is a really serious attempt to do all that can be done in an informal style. Balungi explains and re-defines Einstein's theory of general relativity, quantum mechanics, black holes, the complex architecture of the universe, elementary particles, gravity, and the nature of the mind. This wonderful and exciting book is optimal for physics graduate students and researchers. Not since Stephen W Hawking's celebrated best-seller Brief History of Time and Richard P Feynman's QED: The Strange Theory of Light and Matter has physics been so vividly, intelligently and entertainingly revealed.This is a Second Edition to Quantum Gravity in a Nutshell1.
Release

Classical Electromagnetism in a Nutshell

Author: Anupam Garg

Publisher: Princeton University Press

ISBN: 1400842751

Category: Science

Page: 712

View: 683

DOWNLOAD NOW »

This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons. Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems. Offers a complete treatment of classical electromagnetism Emphasizes physical ideas Separates the treatment of electromagnetism in vacuum and material media Presents key formulas in both SI and Gaussian units Covers applications to other areas of physics Includes more than 300 problems
Release

The Origin of Consciousness in the Social World

Author: Charles Whitehead

Publisher: N.A

ISBN: 9781845401498

Category: Philosophy

Page: 316

View: 6777

DOWNLOAD NOW »

Western individualism has delayed scientific recognition of the essentially social nature of consciousness - or at least of the human mind and brain. This book demonstrates that the origin of consciousness needs to be understood in a social context.
Release

Feynman Motives

Author: Matilde Marcolli

Publisher: World Scientific

ISBN: 9814271217

Category: Science

Page: 220

View: 9964

DOWNLOAD NOW »

This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a OC bottom-upOCO approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of BlochOCoEsnaultOCoKreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, OC top-downOCO approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a RiemannOCoHilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area. Sample Chapter(s). Chapter 1: Perturbative quantum field theory and Feynman diagrams (350 KB). Contents: Perturbative Quantum Field Theory and Feynman Diagrams; Motives and Periods; Feynman Integrals and Algebraic Varieties; Feynman Integrals and GelfandOCoLeray Forms; ConnesOCoKreimer Theory in a Nutshell; The RiemannOCoHilbert Correspondence; The Geometry of DimReg; Renormalization, Singularities, and Hodge Structures; Beyond Scalar Theories. Readership: Graduate students and researchers in mathematical physics and theoretical physics.
Release

Foundations of Probability and Physics--4

Växjö, Sweden, 4-9 June 2006

Author: Guillaume Adenier

Publisher: Amer Inst of Physics

ISBN: 9780735403918

Category: Computers

Page: 464

View: 7661

DOWNLOAD NOW »

All papers have been peer reviewed. This was the 4th conference arranged by ICMM on probabilistic foundations of classical and quantum physics. The first three conferences took place in 2000, 2002, and 2004. Some closely related conferences are Bohmian Mechanics 2000 and Quantum Theory: Reconsideration of Foundations 2001, 2003, and 2005. The main aim of these conferences is to understand the role that probability plays in the foundations of physics, theoretical as well as experimental, classical as well as quantum. In this conference, as well as during our previous conferences, we are glad to welcome a fruitful assembly of theoretical physicists, experimenters, mathematicians, and even philosophers interested in the foundations of probability and physics. Among important topics discussed during the conference were the probabilistic foundations of quantum mechanics, as well as the foundations of probability itself, the formation theory, quantum computing, quantum cryptography, quantum teleportation, quantum fluctuations in relation with stochastic electrodynamics, Bohmian mechanics, measurement theory, completeness and incompleteness of quantum mechanics, macroscopic quantum systems, experiments on quantum nonlocality and locality, Bell's inequality, entanglement; philosophical problems raised by quantum mechanics, and mathematical formalism. A special session devoted to the Bayesain approach to classical and quantum probability was organized.
Release