Probabilistic Deep Learning

Probabilistic Deep Learning

This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications.

Author: Oliver Duerr

Publisher: Manning Publications

ISBN: 9781617296079

Category: Computers

Page: 296

View: 897

Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications. Summary Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability teaches the increasingly popular probabilistic approach to deep learning that allows you to refine your results more quickly and accurately without much trial-and-error testing. Emphasizing practical techniques that use the Python-based Tensorflow Probability Framework, you’ll learn to build highly-performant deep learning applications that can reliably handle the noise and uncertainty of real-world data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology The world is a noisy and uncertain place. Probabilistic deep learning models capture that noise and uncertainty, pulling it into real-world scenarios. Crucial for self-driving cars and scientific testing, these techniques help deep learning engineers assess the accuracy of their results, spot errors, and improve their understanding of how algorithms work. About the book Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications. What's inside Explore maximum likelihood and the statistical basis of deep learning Discover probabilistic models that can indicate possible outcomes Learn to use normalizing flows for modeling and generating complex distributions Use Bayesian neural networks to access the uncertainty in the model About the reader For experienced machine learning developers. About the author Oliver Dürr is a professor at the University of Applied Sciences in Konstanz, Germany. Beate Sick holds a chair for applied statistics at ZHAW and works as a researcher and lecturer at the University of Zurich. Elvis Murina is a data scientist. Table of Contents PART 1 - BASICS OF DEEP LEARNING 1 Introduction to probabilistic deep learning 2 Neural network architectures 3 Principles of curve fitting PART 2 - MAXIMUM LIKELIHOOD APPROACHES FOR PROBABILISTIC DL MODELS 4 Building loss functions with the likelihood approach 5 Probabilistic deep learning models with TensorFlow Probability 6 Probabilistic deep learning models in the wild PART 3 - BAYESIAN APPROACHES FOR PROBABILISTIC DL MODELS 7 Bayesian learning 8 Bayesian neural networks
Categories: Computers

Machine Learning

Machine Learning

The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Author: Kevin P. Murphy

Publisher: MIT Press

ISBN: 9780262018029

Category: Computers

Page: 1067

View: 489

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Categories: Computers

Probabilistic Deep Learning

Probabilistic Deep Learning

Introduction to probabilistic deep learning This chapter covers ▫ What is a
probabilistic model? ▫ What is deep learning and when do you use it? ▫
Comparing traditional machine learning and deep learning approaches for
image ...

Author: Beate Sick

Publisher: Simon and Schuster

ISBN: 9781638350408

Category: Computers

Page: 296

View: 550

Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications. Summary Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability teaches the increasingly popular probabilistic approach to deep learning that allows you to refine your results more quickly and accurately without much trial-and-error testing. Emphasizing practical techniques that use the Python-based Tensorflow Probability Framework, you’ll learn to build highly-performant deep learning applications that can reliably handle the noise and uncertainty of real-world data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology The world is a noisy and uncertain place. Probabilistic deep learning models capture that noise and uncertainty, pulling it into real-world scenarios. Crucial for self-driving cars and scientific testing, these techniques help deep learning engineers assess the accuracy of their results, spot errors, and improve their understanding of how algorithms work. About the book Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications. What's inside Explore maximum likelihood and the statistical basis of deep learning Discover probabilistic models that can indicate possible outcomes Learn to use normalizing flows for modeling and generating complex distributions Use Bayesian neural networks to access the uncertainty in the model About the reader For experienced machine learning developers. About the author Oliver Dürr is a professor at the University of Applied Sciences in Konstanz, Germany. Beate Sick holds a chair for applied statistics at ZHAW and works as a researcher and lecturer at the University of Zurich. Elvis Murina is a data scientist. Table of Contents PART 1 - BASICS OF DEEP LEARNING 1 Introduction to probabilistic deep learning 2 Neural network architectures 3 Principles of curve fitting PART 2 - MAXIMUM LIKELIHOOD APPROACHES FOR PROBABILISTIC DL MODELS 4 Building loss functions with the likelihood approach 5 Probabilistic deep learning models with TensorFlow Probability 6 Probabilistic deep learning models in the wild PART 3 - BAYESIAN APPROACHES FOR PROBABILISTIC DL MODELS 7 Bayesian learning 8 Bayesian neural networks
Categories: Computers

Probabilistic Deep and Metric Learning for Biometric Identification from Eye Movements

Probabilistic  Deep  and Metric Learning for Biometric Identification from Eye Movements

A central insight from psychological studies on human eye movements is that eye movement patterns are highly individually characteristic.

Author: Ahmed Abdelwahab

Publisher:

ISBN: OCLC:1193146739

Category:

Page:

View: 469

A central insight from psychological studies on human eye movements is that eye movement patterns are highly individually characteristic. They can, therefore, be used as a biometric feature, that is, subjects can be identified based on their eye movements. This thesis introduces new machine learning methods to identify subjects based on their eye movements while viewing arbitrary content. The thesis focuses on probabilistic modeling of the problem, which has yielded the best results in the most recent literature. The thesis studies the problem in three phases by proposing a purely probabilistic, probabilistic deep learning, and probabilistic deep metric learning approach. In the first phase, the thesis studies models that rely on psychological concepts about eye movements. Recent literature illustrates that individual-specific distributions of gaze patterns can be used to accurately identify individuals. In these studies, models were based on a simple parametric family of distributions. Such simple parametric models can be robustly ...
Categories:

Study Guide for Machine Learning

Study Guide for Machine Learning

Cram101 Textbook Outline notebooks have been designed so you can get the most out of your class and study time.

Author: Cram101 Publishing

Publisher: Cram101

ISBN: 1490227636

Category: Machine learning

Page: 260

View: 190

Never HIGHLIGHT a Book Again! Virtually all of the testable terms, concepts, persons, places, and events from the textbook are included. Cram101 Just the FACTS101 studyguides give all of the outlines, highlights, notes, and quizzes for your textbook with optional online comprehensive practice tests. Only Cram101 is Textbook Specific. Accompanys: 9780262018029 .
Categories: Machine learning

Machine Learning second edition

Machine Learning  second edition

This second edition has been substantially expanded and revised, incorporating many recent developments in the field.

Author: Kevin P. Murphy

Publisher: MIT Press

ISBN: 9780262361019

Category: Computers

Page: 1292

View: 877

The second and expanded edition of a comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, including deep learning, viewed through the lens of probabilistic modeling and Bayesian decision theory. This second edition has been substantially expanded and revised, incorporating many recent developments in the field. It has new chapters on linear algebra, optimization, implicit generative models, reinforcement learning, and causality; and other chapters on such topics as variational inference and graphical models have been significantly updated. The software for the book (hosted on github) is now implemented in Python rather than MATLAB, and uses state-of-the-art libraries including as scikit-learn, Tensorflow 2, and JAX.
Categories: Computers

Machine Learning

Machine Learning

New to this edition: Complete re-write of the chapter on Neural Networks and Deep Learning to reflect the latest advances since the 1st edition.

Author: Sergios Theodoridis

Publisher: Academic Press

ISBN: 9780128188040

Category: Computers

Page: 1160

View: 727

Machine Learning: A Bayesian and Optimization Perspective, 2nd edition, gives a unified perspective on machine learning by covering both pillars of supervised learning, namely regression and classification. The book starts with the basics, including mean square, least squares and maximum likelihood methods, ridge regression, Bayesian decision theory classification, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines, Bayesian inference with a focus on the EM algorithm and its approximate inference variational versions, Monte Carlo methods, probabilistic graphical models focusing on Bayesian networks, hidden Markov models and particle filtering. Dimensionality reduction and latent variables modelling are also considered in depth. This palette of techniques concludes with an extended chapter on neural networks and deep learning architectures. The book also covers the fundamentals of statistical parameter estimation, Wiener and Kalman filtering, convexity and convex optimization, including a chapter on stochastic approximation and the gradient descent family of algorithms, presenting related online learning techniques as well as concepts and algorithmic versions for distributed optimization. Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. Most of the chapters include typical case studies and computer exercises, both in MATLAB and Python. The chapters are written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as courses on sparse modeling, deep learning, and probabilistic graphical models. New to this edition: Complete re-write of the chapter on Neural Networks and Deep Learning to reflect the latest advances since the 1st edition. The chapter, starting from the basic perceptron and feed-forward neural networks concepts, now presents an in depth treatment of deep networks, including recent optimization algorithms, batch normalization, regularization techniques such as the dropout method, convolutional neural networks, recurrent neural networks, attention mechanisms, adversarial examples and training, capsule networks and generative architectures, such as restricted Boltzman machines (RBMs), variational autoencoders and generative adversarial networks (GANs). Expanded treatment of Bayesian learning to include nonparametric Bayesian methods, with a focus on the Chinese restaurant and the Indian buffet processes. Presents the physical reasoning, mathematical modeling and algorithmic implementation of each method Updates on the latest trends, including sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling Provides case studies on a variety of topics, including protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, and more
Categories: Computers

Optimization for Probabilistic Machine Learning

Optimization for Probabilistic Machine Learning

Later in this dissertation, I will present my works on designing probabilistic models in combination with deep learning methods for representing sequential data.

Author: Ghazal Fazelnia

Publisher:

ISBN: OCLC:1128160871

Category:

Page:

View: 462

Later in this dissertation, I will present my works on designing probabilistic models in combination with deep learning methods for representing sequential data. Sequential datasets comprise a significant portion of resources in the area of machine learning research. Designing models to capture dependencies in sequential datasets are of great interest and have a wide variety of applications in engineering, medicine and statistics. Recent advances in deep learning research has shown exceptional promises in this area. However, they lack interpretability in their general form. To remedy this, I will present my work on mixing probabilistic models with neural network models that results in better performance and expressiveness of the results.
Categories:

Probability for Machine Learning

Probability for Machine Learning

Probability is the bedrock of machine learning.

Author: Jason Brownlee

Publisher: Machine Learning Mastery

ISBN:

Category: Computers

Page: 312

View: 871

Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.
Categories: Computers

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning

This is the first text on pattern recognition to present the Bayesian viewpoint, one that has become increasing popular in the last five years.

Author: Christopher M. Bishop

Publisher: Springer Verlag

ISBN: 0387310738

Category: Computers

Page: 738

View: 436

This is the first text on pattern recognition to present the Bayesian viewpoint, one that has become increasing popular in the last five years. It presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It provides the first text to use graphical models to describe probability distributions when there are no other books that apply graphical models to machine learning. It is also the first four-color book on pattern recognition. The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher.
Categories: Computers

Probabilistic Programming for Deep Learning

Probabilistic Programming for Deep Learning

Second, we introduce hierarchical implicit models (HIMs). HIMs combine the idea of implicit densities with hierarchical Bayesian modeling, thereby defining models via simulators of data with rich hidden structure.

Author: Dustin Tran

Publisher:

ISBN: OCLC:1222808921

Category:

Page:

View: 159

Second, we introduce hierarchical implicit models (HIMs). HIMs combine the idea of implicit densities with hierarchical Bayesian modeling, thereby defining models via simulators of data with rich hidden structure.
Categories:

Probabilistic Graphical Models

Probabilistic Graphical Models

Proceedings of the annual Conference on Uncertainty in Artificial Intelligence, available for 1991-present.

Author: Daphne Koller

Publisher: MIT Press

ISBN: 9780262013192

Category: Computers

Page: 1231

View: 758

Proceedings of the annual Conference on Uncertainty in Artificial Intelligence, available for 1991-present. Since 1985, the Conference on Uncertainty in Artificial Intelligence (UAI) has been the primary international forum for exchanging results on the use of principled uncertain-reasoning methods in intelligent systems. The UAI Proceedings have become a basic reference for researches and practitioners who want to know about both theoretical advances and the latest applied developments in the field.
Categories: Computers

Variational Methods for Machine Learning with Applications to Deep Networks

Variational Methods for Machine Learning with Applications to Deep Networks

This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models.

Author: Lucas Pinheiro Cinelli

Publisher: Springer

ISBN: 3030706788

Category: Technology & Engineering

Page: 165

View: 761

This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere. Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning; Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes; Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material.
Categories: Technology & Engineering

Hands On One shot Learning with Python

Hands On One shot Learning with Python

With this book, you'll explore key approaches to one-shot learning, such as metrics-based, model-based, and optimization-based techniques, all with the help of practical examples.

Author: Shruti Jadon

Publisher: Packt Publishing Ltd

ISBN: 9781838824877

Category: Computers

Page: 156

View: 200

Get to grips with building powerful deep learning models using PyTorch and scikit-learn Key Features Learn how you can speed up the deep learning process with one-shot learning Use Python and PyTorch to build state-of-the-art one-shot learning models Explore architectures such as Siamese networks, memory-augmented neural networks, model-agnostic meta-learning, and discriminative k-shot learning Book Description One-shot learning has been an active field of research for scientists trying to develop a cognitive machine that mimics human learning. With this book, you'll explore key approaches to one-shot learning, such as metrics-based, model-based, and optimization-based techniques, all with the help of practical examples. Hands-On One-shot Learning with Python will guide you through the exploration and design of deep learning models that can obtain information about an object from one or just a few training samples. The book begins with an overview of deep learning and one-shot learning and then introduces you to the different methods you can use to achieve it, such as deep learning architectures and probabilistic models. Once you've got to grips with the core principles, you'll explore real-world examples and implementations of one-shot learning using PyTorch 1.x on datasets such as Omniglot and MiniImageNet. Finally, you'll explore generative modeling-based methods and discover the key considerations for building systems that exhibit human-level intelligence. By the end of this book, you'll be well-versed with the different one- and few-shot learning methods and be able to use them to build your own deep learning models. What you will learn Get to grips with the fundamental concepts of one- and few-shot learning Work with different deep learning architectures for one-shot learning Understand when to use one-shot and transfer learning, respectively Study the Bayesian network approach for one-shot learning Implement one-shot learning approaches based on metrics, models, and optimization in PyTorch Discover different optimization algorithms that help to improve accuracy even with smaller volumes of data Explore various one-shot learning architectures based on classification and regression Who this book is for If you're an AI researcher or a machine learning or deep learning expert looking to explore one-shot learning, this book is for you. It will help you get started with implementing various one-shot techniques to train models faster. Some Python programming experience is necessary to understand the concepts covered in this book.
Categories: Computers

Neural Networks and Deep Learning

Neural Networks and Deep Learning

What you will gain from this book: * A deep understanding of how Deep Learning works * A basics comprehension on how to build a Deep Neural Network from scratch Who this book is for: * Beginners who want to approach the topic, but are too ...

Author: Pat Nakamoto

Publisher: Createspace Independent Publishing Platform

ISBN: 1722147776

Category:

Page: 148

View: 149

What's Inside? This includes 3 manuscripts: Book 1: Neural Networks & Deep Learning: Deep Learning explained to your granny - A visual introduction for beginners who want to make their own Deep Learning Neural Network... What you will gain from this book: * A deep understanding of how Deep Learning works * A basics comprehension on how to build a Deep Neural Network from scratch Who this book is for: * Beginners who want to approach the topic, but are too afraid of complex math to start! * Two main Types of Machine Learning Algorithms * A practical example of Unsupervised Learning * What are Neural Networks? * McCulloch-Pitts's Neuron * Types of activation function * Types of network architectures * Learning processes * Advantages and disadvantages * Let us give a memory to our Neural Network * The example of book writing Software * Deep learning: the ability of learning to learn * How does Deep Learning work? * Main architectures and algorithms * Main types of DNN * Available Frameworks and libraries * Convolutional Neural Networks * Tunnel Vision * Convolution * The right Architecture for a Neural Network * Test your Neural Network * A general overview of Deep Learning * What are the limits of Deep Learning? * Deep Learning: the basics * Layers, Learning paradigms, Training, Validation * Main architectures and algorithms * Models for Deep Learning * Probabilistic graphic models * Restricted Boltzmann Machines * Deep Belief Networks Book2: Deep Learning: Deep Learning explained to your granny - A guide for Beginners... What's Inside? * A general overview of Deep Learning * What are the limits of Deep Learning? * Deep Learning: the basics * Layers, Learning paradigms, Training, Validation * Main architectures and algorithms * Convolutional Neural Networks * Models for Deep Learning * Probabilistic graphic models * Restricted Boltzmann Machines * Deep Belief Networks * Available Frameworks and libraries * TensorFlow Book 3: Big Data: The revolution that is transforming our work, market and world... "Within 2 days we produce the same amount of data generated by at the beginning of the civilization until 2003," said Eric Schmidt in 2010. According to IBM, by 2020 the world will have generated a mass of data on the order of 40 zettabyte (1021Byte). Just think, for example, of digital content such as photos, videos, blogs, posts, and everything that revolves around social networks; only Facebook marks 30 billion pieces of content each month shared by its users. The explosion of social networks, combined with the emergence of smartphones, justifies the fact that one of the recurring terms of recent years in the field of innovation, marketing and IT is "Big Data." The term Big Data indicates data produced in massive quantities, with remarkable rapidity and in the most diverse formats, which require technologies and resources that go far beyond conventional data management and storage systems. In order to obtain from the use of this data the maximum results in the shortest possible time or even in real time, specific tools with high computing capabilities are necessary. But what does the Big Data phenomenon mean? Is the proliferation of data simply the sign of an increasingly invasive world? Or is there something more to it? Pat Nakamoto will guide you through the discovery of the world of Big data, which, according to experts, in the near future could become the new gold or oil, in what is a real Data Driven economy.
Categories:

Deep Learning

Deep Learning

The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

Author: Ian Goodfellow

Publisher: MIT Press

ISBN: 9780262035613

Category: Computers

Page: 775

View: 541

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Categories: Computers

Bayesian Methods for Hackers

Bayesian Methods for Hackers

New technologies such as the Python PyMC library now make it possible to largely abstract Bayesian inference from deeper mathematics.Bayesian Methods for Hackers is the first book built upon this approach.

Author: Cameron Davidson-Pilon

Publisher: Addison-Wesley Professional

ISBN: 0133902838

Category: Computers

Page: 320

View: 136

Master Bayesian Inference through Practical Examples and Computation Not Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice freeing you to get results using computing power. "Bayesian Methods for Hackers" illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you ve mastered these techniques, you ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes Learning the Bayesian state of mind and its practical implications Understanding how computers perform Bayesian inference Using the PyMC Python library to program Bayesian analyses Building and debugging models with PyMC Testing your model s goodness of fit Opening the black box of the Markov Chain Monte Carlo algorithm to see how and why it works Leveraging the power of the Law of Large Numbers Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning Using loss functions to measure an estimate s weaknesses based on your goals and desired outcomes Selecting appropriate priors and understanding how their influence changes with dataset size Overcoming the exploration vs. exploitation dilemma: deciding when pretty good is good enough Using Bayesian inference to improve A/B testing Solving data science problems that rely on mountains of data"
Categories: Computers