Partial Differential Equations

Author: Lawrence C. Evans

Publisher: American Mathematical Soc.

ISBN: 0821849743

Category: Mathematics

Page: 749

View: 1153

DOWNLOAD NOW »

This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. ... Evans' book is evidence of his mastering of the field and the clarity of presentation. --Luis Caffarelli, University of Texas It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ... Every graduate student in analysis should read it. --David Jerison, MIT I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ... I am very happy with the preparation it provides my students. --Carlos Kenig, University of Chicago Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ... An outstanding reference for many aspects of the field. --Rafe Mazzeo, Stanford University
Release

A Basic Course in Partial Differential Equations

Author: Qing Han

Publisher: American Mathematical Soc.

ISBN: 0821852558

Category: Mathematics

Page: 293

View: 9847

DOWNLOAD NOW »

This is a textbook for an introductory graduate course on partial differential equations. Han focuses on linear equations of first and second order. An important feature of his treatment is that the majority of the techniques are applicable more generally. In particular, Han emphasizes a priori estimates throughout the text, even for those equations that can be solved explicitly. Such estimates are indispensable tools for proving the existence and uniqueness of solutions to PDEs, being especially important for nonlinear equations. The estimates are also crucial to establishing properties of the solutions, such as the continuous dependence on parameters. Han's book is suitable for students interested in the mathematical theory of partial differential equations, either as an overview of the subject or as an introduction leading to further study.
Release

Hyperbolic Partial Differential Equations and Geometric Optics

Author: Jeffrey Rauch

Publisher: American Mathematical Soc.

ISBN: 0821872915

Category: Mathematics

Page: 363

View: 2561

DOWNLOAD NOW »

This book introduces graduate students and researchers in mathematics and the sciences to the multifaceted subject of the equations of hyperbolic type, which are used, in particular, to describe propagation of waves at finite speed. Among the topics carefully presented in the book are nonlinear geometric optics, the asymptotic analysis of short wavelength solutions, and nonlinear interaction of such waves. Studied in detail are the damping of waves, resonance, dispersive decay, and solutions to the compressible Euler equations with dense oscillations created by resonant interactions. Many fundamental results are presented for the first time in a textbook format. In addition to dense oscillations, these include the treatment of precise speed of propagation and the existence and stability questions for the three wave interaction equations. One of the strengths of this book is its careful motivation of ideas and proofs, showing how they evolve from related, simpler cases. This makes the book quite useful to both researchers and graduate students interested in hyperbolic partial differential equations. Numerous exercises encourage active participation of the reader. The author is a professor of mathematics at the University of Michigan. A recognized expert in partial differential equations, he has made important contributions to the transformation of three areas of hyperbolic partial differential equations: nonlinear microlocal analysis, the control of waves, and nonlinear geometric optics.
Release

Nonlinear partial differential equations in differential geometry

Author: Robert Hardt

Publisher: American Mathematical Soc.

ISBN: 9780821804315

Category: Mathematics

Page: 339

View: 4593

DOWNLOAD NOW »

What distinguishes differential geometry in the last half of the twentieth century from its earlier history is the use of nonlinear partial differential equations in the study of curved manifolds, submanifolds, mapping problems, and function theory on manifolds, among other topics. The differential equations appear as tools and as objects of study, with analytic and geometric advances fueling each other in the current explosion of progress in this area of geometry in the last twenty years. This book contains lecture notes of minicourses at the Regional Geometry Institute at Park City, Utah, in July 1992. Presented here are surveys of breaking developments in a number of areas of nonlinear partial differential equations in differential geometry. The authors of the articles are not only excellent expositors, but are also leaders in this field of research. All of the articles provide in-depth treatment of the topics and require few prerequisites and less background than current research articles.
Release

Lectures on Linear Partial Differential Equations

Author: Grigoriĭ Ilʹich Eskin

Publisher: American Mathematical Soc.

ISBN: 0821852841

Category: Mathematics

Page: 410

View: 1465

DOWNLOAD NOW »

This book is a reader-friendly, relatively short introduction to the modern theory of linear partial differential equations. An effort has been made to present complete proofs in an accessible and self-contained form. The first three chapters are on elementary distribution theory and Sobolev spaces with many examples and applications to equations with constant coefficients. The following chapters study the Cauchy problem for parabolic and hyperbolic equations, boundary value problems for elliptic equations, heat trace asymptotics, and scattering theory. The book also covers microlocal analysis, including the theory of pseudodifferential and Fourier integral operators, and the propagation of singularities for operators of real principal type. Among the more advanced topics are the global theory of Fourier integral operators and the geometric optics construction in the large, the Atiyah-Singer index theorem in $\mathbb R^n$, and the oblique derivative problem.
Release

Partial Differential Equations

Topics in Fourier Analysis

Author: M.W. Wong

Publisher: CRC Press

ISBN: 1466584017

Category: Mathematics

Page: 184

View: 3481

DOWNLOAD NOW »

Partial Differential Equations: Topics in Fourier Analysis explains how to use the Fourier transform and heuristic methods to obtain significant insight into the solutions of standard PDE models. It shows how this powerful approach is valuable in getting plausible answers that can then be justified by modern analysis. Using Fourier analysis, the text constructs explicit formulas for solving PDEs governed by canonical operators related to the Laplacian on the Euclidean space. After presenting background material, it focuses on: Second-order equations governed by the Laplacian on Rn The Hermite operator and corresponding equation The sub-Laplacian on the Heisenberg group Designed for a one-semester course, this text provides a bridge between the standard PDE course for undergraduate students in science and engineering and the PDE course for graduate students in mathematics who are pursuing a research career in analysis. Through its coverage of fundamental examples of PDEs, the book prepares students for studying more advanced topics such as pseudo-differential operators. It also helps them appreciate PDEs as beautiful structures in analysis, rather than a bunch of isolated ad-hoc techniques.
Release

Partial Differential Equations I

Basic Theory

Author: Michael Eugene Taylor,Eberhard Zeidler

Publisher: Springer Science & Business Media

ISBN: 9780387946535

Category: Mathematics

Page: 563

View: 4946

DOWNLOAD NOW »

This book is intended to be a comprehensive introduction to the subject of partial differential equations. It should be useful to graduate students at all levels beyond that of a basic course in measure theory. It should also be of interest to professional mathematicians in analysis, mathematical physics, and differential geometry. This work will be divided into three volumes, the first of which focuses on the theory of ordinary differential equations and a survey of basic linear PDEs.
Release

Introduction to Partial Differential Equations

Author: David Borthwick

Publisher: Springer

ISBN: 3319489364

Category: Mathematics

Page: 283

View: 9216

DOWNLOAD NOW »

This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise. Within each section the author creates a narrative that answers the five questions: What is the scientific problem we are trying to understand? How do we model that with PDE? What techniques can we use to analyze the PDE? How do those techniques apply to this equation? What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.
Release

Partial Differential Equations

Author: András Vasy

Publisher: American Mathematical Soc.

ISBN: 1470418819

Category: Differential equations, Partial

Page: 281

View: 2264

DOWNLOAD NOW »

This text on partial differential equations is intended for readers who want to understand the theoretical underpinnings of modern PDEs in settings that are important for the applications without using extensive analytic tools required by most advanced texts. The assumed mathematical background is at the level of multivariable calculus and basic metric space material, but the latter is recalled as relevant as the text progresses. The key goal of this book is to be mathematically complete without overwhelming the reader, and to develop PDE theory in a manner that reflects how researchers would think about the material. A concrete example is that distribution theory and the concept of weak solutions are introduced early because while these ideas take some time for the students to get used to, they are fundamentally easy and, on the other hand, play a central role in the field. Then, Hilbert spaces that are quite important in the later development are introduced via completions which give essentially all the features one wants without the overhead of measure theory. There is additional material provided for readers who would like to learn more than the core material, and there are numerous exercises to help solidify one's understanding. The text should be suitable for advanced undergraduates or for beginning graduate students including those in engineering or the sciences.
Release

Partial Differential Equations in Mechanics 1

Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation

Author: A.P.S. Selvadurai

Publisher: Springer Science & Business Media

ISBN: 9783540672838

Category: Mathematics

Page: 596

View: 8932

DOWNLOAD NOW »

This two-volume work focuses on partial differential equations (PDEs) with important applications in mechanical and civil engineering, emphasizing mathematical correctness, analysis, and verification of solutions. The presentation involves a discussion of relevant PDE applications, its derivation, and the formulation of consistent boundary conditions.
Release