Modeling Biological Systems

Principles and Applications

Author: James W. Haefner

Publisher: Springer Science & Business Media

ISBN: 1461541190

Category: Science

Page: 473

View: 6387

DOWNLOAD NOW »

This book is intended as a text for a first course on creating and analyzing computer simulation models of biological systems. The expected audience for this book are students wishing to use dynamic models to interpret real data mueh as they would use standard statistical techniques. It is meant to provide both the essential principles as well as the details and equa tions applicable to a few particular systems and subdisciplines. Biological systems, however, encompass a vast, diverse array of topics and problems. This book discusses only a select number of these that I have found to be useful and interesting to biologists just beginning their appreciation of computer simulation. The examples chosen span classical mathematical models of well-studied systems to state-of-the-art topics such as cellular automata and artificial life. I have stressed the relationship between the models and the biology over mathematical analysis in order to give the reader a sense that mathematical models really are useful to biologists. In this light, I have sought examples that address fundamental and, I think, interesting biological questions. Almost all of the models are directly COIIl pared to quantitative data to provide at least a partial demonstration that some biological models can accurately predict.
Release

A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations

Author: Vishwesh V. Kulkarni,Guy-Bart Stan,Karthik Raman

Publisher: Springer

ISBN: 9401790418

Category: Medical

Page: 332

View: 9589

DOWNLOAD NOW »

The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems. More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. Volume I provides a panoramic view that illustrates the potential of such mathematical methods in systems and synthetic biology. Recent advances in systems and synthetic biology have clearly demonstrated the benefits of a rigorous and systematic approach rooted in the principles of systems and control theory - not only does it lead to exciting insights and discoveries but it also reduces the inordinately lengthy trial-and-error process of wet-lab experimentation, thereby facilitating significant savings in human and financial resources. In Volume I, some of the leading researchers in the field of systems and synthetic biology demonstrate how systems and control theoretic concepts and techniques can be useful, or should evolve to be useful, in order to understand how biological systems function. As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.
Release

Mathematical Models in Population Biology and Epidemiology

Author: Fred Brauer,Carlos Castillo-Chavez

Publisher: Springer Science & Business Media

ISBN: 9780387989020

Category: Science

Page: 417

View: 6809

DOWNLOAD NOW »

The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.
Release

Modelling Nutrient Digestion and Utilisation in Farm Animals

Author: D. Sauvant,J. van Milgen,P. Faverdin,N. Friggens

Publisher: Springer Science & Business Media

ISBN: 908686712X

Category: Science

Page: 430

View: 7169

DOWNLOAD NOW »

For more than 30 years, modelling has been an important method for integrating, in a flexible, comprehensive and widely applicable way, basic knowledge and biological concepts on digestion and metabolism in farm animals. The purpose of this book is to present the 'state of art' in this area. The chapters are written by leading teams and researchers in this field of study, mainly from Europe, North America and Australasia. Considerable progress has been made in topics dealing with: modelling methods, feeding behaviour, digestion and metabolic processes in ruminants and monogastric animals. This progress is clearly illustrated by the emergence of a new paradigm in animal nutrition, which has moved from the aim to cover the requirements of the animal to explaining and predicting the responses of the animals to diets (e.g., productivity and efficiency, impact on quality of products, environmental aspects, health and well-being). In this book several chapters illustrate that through empirical models, meta-analysis is an efficient tool to synthesize information gathered over recent decades. In addition, compared with other books on modelling farm animal nutrition, two new aspects received particular attention: expanding knowledge of the individual animal to understanding the functioning and management of herds, and the consideration of the environmental impact of animal production. This book is a valuable source of information for researchers, nutritionists, advisors, and graduate students who want to have up-to-date and concise information on mathematical modelling applied to farm animals.
Release

Plagues and Epidemics

Infected Spaces Past and Present

Author: D. Ann Herring,Alan C. Swedlund

Publisher: Berg

ISBN: 1847887554

Category: Social Science

Page: 416

View: 9034

DOWNLOAD NOW »

Until recently, plagues were thought to belong in the ancient past. Now there are deep worries about global pandemics. This book presents views from anthropology about this much publicized and complex problem. The authors take us to places where epidemics are erupting, waning, or gone, and to other places where they have not yet arrived, but where a frightening story line is already in place. They explore public health bureaucracies and political arenas where the power lies to make decisions about what is, and is not, an epidemic. They look back into global history to uncover disease trends and look ahead to a future of expanding plagues within the context of climate change. The chapters are written from a range of perspectives, from the science of modeling epidemics to the social science of understanding them. Patterns emerge when people are engulfed by diseases labeled as epidemics but which have the hallmarks of plague. There are cycles of shame and blame, stigma, isolation of the sick, fear of contagion, and end-of-the-world scenarios. Plague, it would seem, is still among us.
Release

Principles and Models of Biological Transport

Author: Morton H. Friedman

Publisher: Springer Science & Business Media

ISBN: 9780387792408

Category: Technology & Engineering

Page: 510

View: 9923

DOWNLOAD NOW »

Focus, Organization, and Content This book, like the first edition, deals with the mass transport processes that take place in living systems, with a focus on the normal behavior of eukaryotic cells and the - ganisms they constitute, in their normal physiological environment. As a consequence of this focus, the structure and content of the book differ from those of traditional transport texts. We do not start with the engineering principles of mass transport (which are well presented elsewhere) and then seek biological applications of these principles; rather, we begin with the biological processes themselves, and then - velop the models and analytical tools that are needed to describe them. This approach has several consequences. First of all, it drives the content of the text in a direction distinctively different from conventional transport texts. This is - cause the tools and models needed to describe complex biological processes are often different from those employed to describe more well-characterized inanimate systems. Many biological processes must still be described phenomenologically, using me- odologies like nonequilibrium thermodynamics. Simple electrical analogs employing a paucity of parameters can be more useful for characterization and prediction than complex theories based on the behavior of more well-defined systems on a laboratory bench. By allowing the biology to drive the choice of analysis tools and models, the latter are consistently presented in the context of real biological systems, and analysis and biology are interwoven throughout.
Release

Systems Biology in Practice

Concepts, Implementation and Application

Author: Edda Klipp,Ralf Herwig,Axel Kowald,Christoph Wierling,Hans Lehrach

Publisher: John Wiley & Sons

ISBN: 352760488X

Category: Medical

Page: 486

View: 8320

DOWNLOAD NOW »

Presenting the main concepts, this book leads students as well as advanced researchers from different disciplines to an understanding of current ideas in the complex field of comprehensive experimental investigation of biological objects, analysis of data, development of models, simulation, and hypothesis generation. It provides readers with guidance on how a specific complex biological question may be tackled: - How to formulate questions that can be answered - Which experiments to perform - Where to find information in databases and on the Internet - What kinds of models are appropriate - How to use simulation tools - What can be learned from the comparison of experimental data and modeling results - How to make testable predictions. The authors demonstrate how mathematical concepts can illuminate the principles underlying biology at a genetic, molecular, cellular and even organism level, and how to use mathematical tools for analysis and prediction.
Release

Systems Biology

Author: Jens Nielsen,Stefan Hohmann,Sang Yup Lee,Gregory Stephanopoulos

Publisher: John Wiley & Sons

ISBN: 3527335587

Category: Computers

Page: 432

View: 4972

DOWNLOAD NOW »

Comprehensive coverage of the many different aspects of systems biology, resulting in an excellent overview of the experimental and computational approaches currently in use to study biological systems. Each chapter represents a valuable introduction to one specific branch of systems biology, while also including the current state of the art and pointers to future directions. Following different methods for the integrative analysis of omics data, the book goes on to describe techniques that allow for the direct quantification of carbon fluxes in large metabolic networks, including the use of 13C labelled substrates and genome-scale metabolic models. The latter is explained on the basis of the model organism Escherichia coli as well as the human metabolism. Subsequently, the authors deal with the application of such techniques to human health and cell factory engineering, with a focus on recent progress in building genome-scale models and regulatory networks. They highlight the importance of such information for specific biological processes, including the ageing of cells, the immune system and organogenesis. The book concludes with a summary of recent advances in genome editing, which have allowed for precise genetic modifications, even with the dynamic control of gene expression. This is part of the Advances Biotechnology series, covering all pertinent aspects of the field with each volume prepared by eminent scientists who are experts on the topic in question.
Release