Mathematical Logic: Part 1

Propositional Calculus, Boolean Algebras, Predicate Calculus, Completeness Theorems

Author: René Cori,Daniel Lascar

Publisher: OUP Oxford

ISBN: 0191589772

Category: Mathematics

Page: 360

View: 9613

DOWNLOAD NOW »

Logic forms the basis of mathematics, and is hence a fundamental part of any mathematics course. In particular, it is a major element in theoretical computer science and has undergone a huge revival with the explosion of interest in computers and computer science. This book provides students with a clear and accessible introduction to this important subject. The concept of model underlies the whole book, giving the text a theoretical coherence whilst still covering a wide area of logic.
Release

A Course in Mathematical Logic for Mathematicians

Author: Yu. I. Manin

Publisher: Springer Science & Business Media

ISBN: 1441906150

Category: Mathematics

Page: 384

View: 1954

DOWNLOAD NOW »

1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Release

An Invitation to Model Theory

Author: Jonathan Kirby

Publisher: Cambridge University Press

ISBN: 1316732398

Category: Mathematics

Page: N.A

View: 4592

DOWNLOAD NOW »

Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.
Release

Logical Foundations of Proof Complexity

Author: Stephen Cook,Phuong Nguyen

Publisher: Cambridge University Press

ISBN: 1139486306

Category: Mathematics

Page: N.A

View: 9501

DOWNLOAD NOW »

This book treats bounded arithmetic and propositional proof complexity from the point of view of computational complexity. The first seven chapters include the necessary logical background for the material and are suitable for a graduate course. Associated with each of many complexity classes are both a two-sorted predicate calculus theory, with induction restricted to concepts in the class, and a propositional proof system. The complexity classes range from AC0 for the weakest theory up to the polynomial hierarchy. Each bounded theorem in a theory translates into a family of (quantified) propositional tautologies with polynomial size proofs in the corresponding proof system. The theory proves the soundness of the associated proof system. The result is a uniform treatment of many systems in the literature, including Buss's theories for the polynomial hierarchy and many disparate systems for complexity classes such as AC0, AC0(m), TC0, NC1, L, NL, NC, and P.
Release