Materials Modelling Using Density Functional Theory

Properties and Predictions

Author: Feliciano Giustino

Publisher: Oxford University Press (UK)

ISBN: 0199662444

Category: Science

Page: 286

View: 3195

This book is an introduction to the modern quantum theory of materials, and primarily addresses seniorundergraduate and first-year graduate students in the physical and chemical sciences, and in materials science and engineering. As advanced materials are becoming ubiquitous in every aspect of our life, the use of quantum mechanics to understand, predict, and design new materials is experiencing a fast-paced growth in academic and industrial research.Following this trend, atomistic materials modelling is becoming an important component of undergraduate science education, however there is still no book on this subject written primarily for anundergraduate readership. The book explains the fundamental ideas of density functional theory, and how this theory can be used as a powerful method for explaining and even predicting the properties of materials with stunning accuracy. This book can be used either as a complement to the quantum theory of materials, or as a primer in modern techniques of computational materials modelling using quantum mechanics.
Release

XAFS Techniques for Catalysts, Nanomaterials, and Surfaces

Author: Yasuhiro Iwasawa,Kiyotaka Asakura,Mizuki Tada

Publisher: Springer

ISBN: 3319438662

Category: Science

Page: 556

View: 5410

This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines.
Release

Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems

Author: David D. O'Regan

Publisher: Springer Science & Business Media

ISBN: 9783642232381

Category: Technology & Engineering

Page: 216

View: 5771

Density functional theory (DFT) has become the standard workhorse for quantum mechanical simulations as it offers a good compromise between accuracy and computational cost. However, there are many important systems for which DFT performs very poorly, most notably strongly-correlated materials, resulting in a significant recent growth in interest in 'beyond DFT' methods. The widely used DFT+U technique, in particular, involves the addition of explicit Coulomb repulsion terms to reproduce the physics of spatially-localised electronic subspaces. The magnitude of these corrective terms, measured by the famous Hubbard U parameter, has received much attention but less so for the projections used to delineate these subspaces. The dependence on the choice of these projections is studied in detail here and a method to overcome this ambiguity in DFT+U, by self-consistently determining the projections, is introduced. The author shows how nonorthogonal representations for electronic states may be used to construct these projections and, furthermore, how DFT+U may be implemented with a linearly increasing cost with respect to system size. The use of nonorthogonal functions in the context of electronic structure calculations is extensively discussed and clarified, with new interpretations and results, and, on this topic, this work may serve as a reference for future workers in the field.
Release

Introduction to materials modelling

Author: Zoe Barber

Publisher: Woodhead Pub Ltd

ISBN: N.A

Category: Computers

Page: 165

View: 9294

Introduction to materials modelling describes the use of computer simulation for the prediction and understanding of the structure and properties of materials. It has been based upon the Materials Modelling Masters course given at the Department of Materials Science and Metallurgy, University of Cambridge, UK, which is aimed particularly at graduate students with a background in any of the physical sciences.
Release

Spectroscopic Properties of Inorganic and Organometallic Compounds

Techniques, Materials and Applications

Author: Jack Yarwood,Richard Douthwaite,Simon Duckett

Publisher: Royal Society of Chemistry

ISBN: 1849733953

Category: Science

Page: 334

View: 2862

Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications provides a unique source of information in an important area of chemistry. Since Volume 40 the nature and ethos of this series have been altered to reflect a change of emphasis towards 'Techniques, Materials and Applications'. Researchers will now find up-to-date critical reviews which provide in-depth analyses of the leading papers in the field, with authors commenting of the quality and value of the work in a wider context. Focus areas will include structure-function relationships, photochemistry and spectroscopy of inorganic complexes, and catalysis; materials such as ceramics, cements, pigments, glasses and corrosion products; techniques such as advanced laser spectroscopy and theoretical methods.
Release

Electronic Structure of Materials

Author: Adrian P. Sutton

Publisher: Clarendon Press

ISBN: 0191588539

Category:

Page: 276

View: 9241

This book describes the modern real-space approach to electronic structures and properties of crystalline and non-crystalline materials in a form readily accessible to undergraduates in materials science, physics, and chemistry. - ;This book describes the modern real-space approach to electronic structures and properties of crystalline and non-crystalline materials in a form readily accessible to undergraduates in materials science, physics, and chemistry. -
Release

Materials for Tomorrow

Theory, Experiments and Modelling

Author: Sibylle Gemming,Michael Schreiber,Jens-Boie Suck

Publisher: Springer Science & Business Media

ISBN: 3540479716

Category: Technology & Engineering

Page: 194

View: 7948

This book contains six chapters on central topics in materials science. Each is written by specialists and gives a state-of-art presentation of the subject for graduate students and scientists not necessarily working in that field. Computer simulations of new materials, theory and experimental work are all extensively discussed. Most of the topics discussed have a bearing on nanomaterials and nanodevices.
Release