Mastering matplotlib

Author: Duncan M. McGreggor

Publisher: Packt Publishing Ltd

ISBN: 1783987553

Category: Computers

Page: 292

View: 2739

DOWNLOAD NOW »

matplotlib is a Python plotting library that provides a large feature set for a multitude of platforms. Given the depth of the library's legacy and the variety of related open source projects, gaining expert knowledge can be a time-consuming and often confusing process. You'll begin your exciting journey learning about the skills that are necessary in leading technical teams for a visualization project or to become a matplotlib contributor. Supported by highly-detailed IPython Notebooks, this book takes you through the conceptual components underlying the library and then provides a detailed overview of its APIs. From there, you will learn about event handling and how to code for interactive plots. Next you will move on to customization techniques, local configuration of matplotib, and then deployments in Cloud environments. The adventure culminates in an exploration of big data visualization and matplotlib clustering.
Release

Mastering Matplotlib 2.x

Effective Data Visualization techniques with Python

Author: Benjamin Walter Keller

Publisher: Packt Publishing Ltd

ISBN: 1789618177

Category: Computers

Page: 214

View: 8950

DOWNLOAD NOW »

Understand and build beautiful and advanced plots with Matplotlib and Python Key Features Practical guide with hands-on examples to design interactive plots Advanced techniques to constructing complex plots Explore 3D plotting and visualization using Jupyter Notebook Book Description In this book, you’ll get hands-on with customizing your data plots with the help of Matplotlib. You’ll start with customizing plots, making a handful of special-purpose plots, and building 3D plots. You’ll explore non-trivial layouts, Pylab customization, and more about tile configuration. You’ll be able to add text, put lines in plots, and also handle polygons, shapes, and annotations. Non-Cartesian and vector plots are exciting to construct, and you’ll explore them further in this book. You’ll delve into niche plots and visualize ordinal and tabular data. In this book, you’ll be exploring 3D plotting, one of the best features when it comes to 3D data visualization, along with Jupyter Notebook, widgets, and creating movies for enhanced data representation. Geospatial plotting will also be explored. Finally, you’ll learn how to create interactive plots with the help of Jupyter. Learn expert techniques for effective data visualization using Matplotlib 3 and Python with our latest offering -- Matplotlib 3.0 Cookbook What you will learn Deal with non-trivial and unusual plots Understanding Basemap methods Customize and represent data in 3D Construct Non-Cartesian and vector plots Design interactive plots using Jupyter Notebook Make movies for enhanced data representation Who this book is for This book is aimed at individuals who want to explore data visualization techniques. A basic knowledge of Matplotlib and Python is required.
Release

Mastering Python Scientific Computing

Author: Hemant Kumar Mehta

Publisher: Packt Publishing Ltd

ISBN: 1783288833

Category: Computers

Page: 300

View: 8244

DOWNLOAD NOW »

A complete guide for Python programmers to master scientific computing using Python APIs and tools About This Book The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered. Most of the Python APIs and tools used in scientific computing are discussed in detail The concepts are discussed with suitable example programs Who This Book Is For If you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming. What You Will Learn Fundamentals and components of scientific computing Scientific computing data management Performing numerical computing using NumPy and SciPy Concepts and programming for symbolic computing using SymPy Using the plotting library matplotlib for data visualization Data analysis and visualization using Pandas, matplotlib, and IPython Performing parallel and high performance computing Real-life case studies and best practices of scientific computing In Detail In today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing. At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python. The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs. Style and approach This book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.
Release

Mastering Python Networking

Your one-stop solution to using Python for network automation, DevOps, and Test-Driven Development, 2nd Edition

Author: Eric Chou

Publisher: Packt Publishing Ltd

ISBN: 1789130263

Category: Computers

Page: 466

View: 7985

DOWNLOAD NOW »

Master the art of using Python for a diverse range of network engineering tasks Key Features Explore the power of Python libraries to tackle difficult network problems efficiently and effectively Use Python for network device automation, DevOps, and software-defined networking Become an expert in implementing advanced network-related tasks with Python Book Description Networks in your infrastructure set the foundation for how your application can be deployed, maintained, and serviced. Python is the ideal language for network engineers to explore tools that were previously available to systems engineers and application developers. In this second edition of Mastering Python Networking, you’ll embark on a Python-based journey to transition from traditional network engineers to network developers ready for the next-generation of networks. This book begins by reviewing the basics of Python and teaches you how Python can interact with both legacy and API-enabled network devices. As you make your way through the chapters, you will then learn to leverage high-level Python packages and frameworks to perform network engineering tasks for automation, monitoring, management, and enhanced security. In the concluding chapters, you will use Jenkins for continuous network integration as well as testing tools to verify your network. By the end of this book, you will be able to perform all networking tasks with ease using Python. What you will learn Use Python libraries to interact with your network Integrate Ansible 2.5 using Python to control Cisco, Juniper, and Arista eAPI network devices Leverage existing frameworks to construct high-level APIs Learn how to build virtual networks in the AWS Cloud Understand how Jenkins can be used to automatically deploy changes in your network Use PyTest and Unittest for Test-Driven Network Development Who this book is for Mastering Python Networking is for network engineers and programmers who want to use Python for networking. Basic familiarity with Python programming and networking-related concepts such as Transmission Control Protocol/Internet Protocol (TCP/IP) will be useful.
Release

Mastering Python Data Visualization

Author: Kirthi Raman

Publisher: Packt Publishing Ltd

ISBN: 1783988339

Category: Computers

Page: 372

View: 2113

DOWNLOAD NOW »

Generate effective results in a variety of visually appealing charts using the plotting packages in Python About This Book Explore various tools and their strengths while building meaningful representations that can make it easier to understand data Packed with computational methods and algorithms in diverse fields of science Written in an easy-to-follow categorical style, this book discusses some niche techniques that will make your code easier to work with and reuse Who This Book Is For If you are a Python developer who performs data visualization and wants to develop existing knowledge about Python to build analytical results and produce some amazing visual display, then this book is for you. A basic knowledge level and understanding of Python libraries is assumed. What You Will Learn Gather, cleanse, access, and map data to a visual framework Recognize which visualization method is applicable and learn best practices for data visualization Get acquainted with reader-driven narratives and author-driven narratives and the principles of perception Understand why Python is an effective tool to be used for numerical computation much like MATLAB, and explore some interesting data structures that come with it Explore with various visualization choices how Python can be very useful in computation in the field of finance and statistics Get to know why Python is the second choice after Java, and is used frequently in the field of machine learning Compare Python with other visualization approaches using Julia and a JavaScript-based framework such as D3.js Discover how Python can be used in conjunction with NoSQL such as Hive to produce results efficiently in a distributed environment In Detail Python has a handful of open source libraries for numerical computations involving optimization, linear algebra, integration, interpolation, and other special functions using array objects, machine learning, data mining, and plotting. Pandas have a productive environment for data analysis. These libraries have a specific purpose and play an important role in the research into diverse domains including economics, finance, biological sciences, social science, health care, and many more. The variety of tools and approaches available within Python community is stunning, and can bolster and enhance visual story experiences. This book offers practical guidance to help you on the journey to effective data visualization. Commencing with a chapter on the data framework, which explains the transformation of data into information and eventually knowledge, this book subsequently covers the complete visualization process using the most popular Python libraries with working examples. You will learn the usage of Numpy, Scipy, IPython, MatPlotLib, Pandas, Patsy, and Scikit-Learn with a focus on generating results that can be visualized in many different ways. Further chapters are aimed at not only showing advanced techniques such as interactive plotting; numerical, graphical linear, and non-linear regression; clustering and classification, but also in helping you understand the aesthetics and best practices of data visualization. The book concludes with interesting examples such as social networks, directed graph examples in real-life, data structures appropriate for these problems, and network analysis. By the end of this book, you will be able to effectively solve a broad set of data analysis problems. Style and approach The approach of this book is not step by step, but rather categorical. The categories are based on fields such as bioinformatics, statistical and machine learning, financial computation, and linear algebra. This approach is beneficial for the community in many different fields of work and also helps you learn how one approach can make sense across many fields
Release

Mastering Python Scripting for System Administrators

Write scripts and automate them for real-world administration tasks using Python

Author: Ganesh Sanjiv Naik

Publisher: Packt Publishing Ltd

ISBN: 1789134269

Category: Computers

Page: 318

View: 4573

DOWNLOAD NOW »

Leverage the features and libraries of Python to administrate your environment efficiently. Key Features Learn how to solve problems of system administrators and automate routine activities Learn to handle regular expressions, network administration Building GUI, web-scraping and database administration including data analytics Book Description Python has evolved over time and extended its features in relation to every possible IT operation. Python is simple to learn, yet has powerful libraries that can be used to build powerful Python scripts for solving real-world problems and automating administrators' routine activities. The objective of this book is to walk through a series of projects that will teach readers Python scripting with each project. This book will initially cover Python installation and quickly revise basic to advanced programming fundamentals. The book will then focus on the development process as a whole, from setup to planning to building different tools. It will include IT administrators' routine activities (text processing, regular expressions, file archiving, and encryption), network administration (socket programming, email handling, the remote controlling of devices using telnet/ssh, and protocols such as SNMP/DHCP), building graphical user interface, working with websites (Apache log file processing, SOAP and REST APIs communication, and web scraping), and database administration (MySQL and similar database data administration, data analytics, and reporting). By the end of this book, you will be able to use the latest features of Python and be able to build powerful tools that will solve challenging, real-world tasks What you will learn Understand how to install Python and debug Python scripts Understand and write scripts for automating testing and routine administrative activities Understand how to write scripts for text processing, encryption, decryption, and archiving Handle files, such as pdf, excel, csv, and txt files, and generate reports Write scripts for remote network administration, including handling emails Build interactive tools using a graphical user interface Handle Apache log files, SOAP and REST APIs communication Automate database administration and perform statistical analysis Who this book is for This book would be ideal for users with some basic understanding of Python programming and who are interested in scaling their programming skills to command line scripting and system administration. Prior knowledge of Python would be necessary.
Release

Python for Finance

Mastering Data-Driven Finance

Author: Yves Hilpisch

Publisher: O'Reilly Media

ISBN: 1492024317

Category: Computers

Page: 720

View: 7676

DOWNLOAD NOW »

The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Release

Python: Data Analytics and Visualization

Author: Phuong Vo.T.H,Martin Czygan,Ashish Kumar,Kirthi Raman

Publisher: Packt Publishing Ltd

ISBN: 1788294858

Category: Computers

Page: 866

View: 1759

DOWNLOAD NOW »

Understand, evaluate, and visualize data About This Book Learn basic steps of data analysis and how to use Python and its packages A step-by-step guide to predictive modeling including tips, tricks, and best practices Effectively visualize a broad set of analyzed data and generate effective results Who This Book Is For This book is for Python Developers who are keen to get into data analysis and wish to visualize their analyzed data in a more efficient and insightful manner. What You Will Learn Get acquainted with NumPy and use arrays and array-oriented computing in data analysis Process and analyze data using the time-series capabilities of Pandas Understand the statistical and mathematical concepts behind predictive analytics algorithms Data visualization with Matplotlib Interactive plotting with NumPy, Scipy, and MKL functions Build financial models using Monte-Carlo simulations Create directed graphs and multi-graphs Advanced visualization with D3 In Detail You will start the course with an introduction to the principles of data analysis and supported libraries, along with NumPy basics for statistics and data processing. Next, you will overview the Pandas package and use its powerful features to solve data-processing problems. Moving on, you will get a brief overview of the Matplotlib API .Next, you will learn to manipulate time and data structures, and load and store data in a file or database using Python packages. You will learn how to apply powerful packages in Python to process raw data into pure and helpful data using examples. You will also get a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or building helpful products such as recommendations and predictions using Scikit-learn. After this, you will move on to a data analytics specialization—predictive analytics. Social media and IOT have resulted in an avalanche of data. You will get started with predictive analytics using Python. You will see how to create predictive models from data. You will get balanced information on statistical and mathematical concepts, and implement them in Python using libraries such as Pandas, scikit-learn, and NumPy. You'll learn more about the best predictive modeling algorithms such as Linear Regression, Decision Tree, and Logistic Regression. Finally, you will master best practices in predictive modeling. After this, you will get all the practical guidance you need to help you on the journey to effective data visualization. Starting with a chapter on data frameworks, which explains the transformation of data into information and eventually knowledge, this path subsequently cover the complete visualization process using the most popular Python libraries with working examples This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Getting Started with Python Data Analysis, Phuong Vo.T.H &Martin Czygan Learning Predictive Analytics with Python, Ashish Kumar Mastering Python Data Visualization, Kirthi Raman Style and approach The course acts as a step-by-step guide to get you familiar with data analysis and the libraries supported by Python with the help of real-world examples and datasets. It also helps you gain practical insights into predictive modeling by implementing predictive-analytics algorithms on public datasets with Python. The course offers a wealth of practical guidance to help you on this journey to data visualization
Release

Python: End-to-end Data Analysis

Author: Phuong Vothihong,Martin Czygan,Ivan Idris,Magnus Vilhelm Persson,Luiz Felipe Martins

Publisher: Packt Publishing Ltd

ISBN: 1788396545

Category: Computers

Page: 931

View: 5928

DOWNLOAD NOW »

Leverage the power of Python to clean, scrape, analyze, and visualize your data About This Book Clean, format, and explore your data using the popular Python libraries and get valuable insights from it Analyze big data sets; create attractive visualizations; manipulate and process various data types using NumPy, SciPy, and matplotlib; and more Packed with easy-to-follow examples to develop advanced computational skills for the analysis of complex data Who This Book Is For This course is for developers, analysts, and data scientists who want to learn data analysis from scratch. This course will provide you with a solid foundation from which to analyze data with varying complexity. A working knowledge of Python (and a strong interest in playing with your data) is recommended. What You Will Learn Understand the importance of data analysis and master its processing steps Get comfortable using Python and its associated data analysis libraries such as Pandas, NumPy, and SciPy Clean and transform your data and apply advanced statistical analysis to create attractive visualizations Analyze images and time series data Mine text and analyze social networks Perform web scraping and work with different databases, Hadoop, and Spark Use statistical models to discover patterns in data Detect similarities and differences in data with clustering Work with Jupyter Notebook to produce publication-ready figures to be included in reports In Detail Data analysis is the process of applying logical and analytical reasoning to study each component of data present in the system. Python is a multi-domain, high-level, programming language that offers a range of tools and libraries suitable for all purposes, it has slowly evolved as one of the primary languages for data science. Have you ever imagined becoming an expert at effectively approaching data analysis problems, solving them, and extracting all of the available information from your data? If yes, look no further, this is the course you need! In this course, we will get you started with Python data analysis by introducing the basics of data analysis and supported Python libraries such as matplotlib, NumPy, and pandas. Create visualizations by choosing color maps, different shapes, sizes, and palettes then delve into statistical data analysis using distribution algorithms and correlations. You'll then find your way around different data and numerical problems, get to grips with Spark and HDFS, and set up migration scripts for web mining. You'll be able to quickly and accurately perform hands-on sorting, reduction, and subsequent analysis, and fully appreciate how data analysis methods can support business decision-making. Finally, you will delve into advanced techniques such as performing regression, quantifying cause and effect using Bayesian methods, and discovering how to use Python's tools for supervised machine learning. The course provides you with highly practical content explaining data analysis with Python, from the following Packt books: Getting Started with Python Data Analysis. Python Data Analysis Cookbook. Mastering Python Data Analysis. By the end of this course, you will have all the knowledge you need to analyze your data with varying complexity levels, and turn it into actionable insights. Style and approach Learn Python data analysis using engaging examples and fun exercises, and with a gentle and friendly but comprehensive "learn-by-doing" approach. It offers you a useful way of analyzing the data that's specific to this course, but that can also be applied to any other data. This course is designed to be both a guide and a reference for moving beyond the basics of data analysis.
Release

Mastering Exploratory Analysis with pandas

Build an end-to-end data analysis workflow with Python

Author: Harish Garg

Publisher: Packt Publishing Ltd

ISBN: 178961547X

Category: Computers

Page: 140

View: 8059

DOWNLOAD NOW »

Explore Python frameworks like pandas, Jupyter notebooks, and Matplotlib to build data pipelines and data visualization Key Features Learn to set up data analysis pipelines with pandas and Jupyter notebooks Effective techniques for data selection, manipulation, and visualization Introduction to Matplotlib for interactive data visualization using charts and plots Book Description The pandas is a Python library that lets you manipulate, transform, and analyze data. It is a popular framework for exploratory data visualization and analyzing datasets and data pipelines based on their properties. This book will be your practical guide to exploring datasets using pandas. You will start by setting up Python, pandas, and Jupyter Notebooks. You will learn how to use Jupyter Notebooks to run Python code. We then show you how to get data into pandas and do some exploratory analysis, before learning how to manipulate and reshape data using pandas methods. You will also learn how to deal with missing data from your datasets, how to draw charts and plots using pandas and Matplotlib, and how to create some effective visualizations for your audience. Finally, you will wrapup your newly gained pandas knowledge by learning how to import data out of pandas into some popular file formats. By the end of this book, you will have a better understanding of exploratory analysis and how to build exploratory data pipelines with Python. What you will learn Learn how to read different kinds of data into pandas DataFrames for data analysis Manipulate, transform, and apply formulas to data imported into pandas DataFrames Use pandas to analyze and visualize different kinds of data to gain real-world insights Extract transformed data form pandas DataFrames and convert it into the formats your application expects Manipulate model time-series data, perform algorithmic trading, derive results on fixed and moving windows, and more Effective data visualization using Matplotlib Who this book is for If you are a budding data scientist looking to learn the popular pandas library, or a Python developer looking to step into the world of data analysis, this book is the ideal resource you need to get started. Some programming experience in Python will be helpful to get the most out of this course
Release