Mastering Java Machine Learning

Mastering Java Machine Learning

Become an advanced practitioner with this progressive set of master classes on application-oriented machine learning About This Book Comprehensive coverage of key topics in machine learning with an emphasis on both the theoretical and ...

Author: Dr. Uday Kamath

Publisher: Packt Publishing Ltd

ISBN: 9781785888557

Category: Computers

Page: 556

View: 269

Become an advanced practitioner with this progressive set of master classes on application-oriented machine learning About This Book Comprehensive coverage of key topics in machine learning with an emphasis on both the theoretical and practical aspects More than 15 open source Java tools in a wide range of techniques, with code and practical usage. More than 10 real-world case studies in machine learning highlighting techniques ranging from data ingestion up to analyzing the results of experiments, all preparing the user for the practical, real-world use of tools and data analysis. Who This Book Is For This book will appeal to anyone with a serious interest in topics in Data Science or those already working in related areas: ideally, intermediate-level data analysts and data scientists with experience in Java. Preferably, you will have experience with the fundamentals of machine learning and now have a desire to explore the area further, are up to grappling with the mathematical complexities of its algorithms, and you wish to learn the complete ins and outs of practical machine learning. What You Will Learn Master key Java machine learning libraries, and what kind of problem each can solve, with theory and practical guidance. Explore powerful techniques in each major category of machine learning such as classification, clustering, anomaly detection, graph modeling, and text mining. Apply machine learning to real-world data with methodologies, processes, applications, and analysis. Techniques and experiments developed around the latest specializations in machine learning, such as deep learning, stream data mining, and active and semi-supervised learning. Build high-performing, real-time, adaptive predictive models for batch- and stream-based big data learning using the latest tools and methodologies. Get a deeper understanding of technologies leading towards a more powerful AI applicable in various domains such as Security, Financial Crime, Internet of Things, social networking, and so on. In Detail Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science. This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today. On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain. Style and approach A practical guide to help you explore machine learning—and an array of Java-based tools and frameworks—with the help of practical examples and real-world use cases.
Categories: Computers

Mastering Java for Data Science

Mastering Java for Data Science

Use Java to create a diverse range of Data Science applications and bring Data Science into production About This Book An overview of modern Data Science and Machine Learning libraries available in Java Coverage of a broad set of topics, ...

Author: Alexey Grigorev

Publisher: Packt Publishing Ltd

ISBN: 9781785887390

Category: Computers

Page: 364

View: 871

Use Java to create a diverse range of Data Science applications and bring Data Science into production About This Book An overview of modern Data Science and Machine Learning libraries available in Java Coverage of a broad set of topics, going from the basics of Machine Learning to Deep Learning and Big Data frameworks. Easy-to-follow illustrations and the running example of building a search engine. Who This Book Is For This book is intended for software engineers who are comfortable with developing Java applications and are familiar with the basic concepts of data science. Additionally, it will also be useful for data scientists who do not yet know Java but want or need to learn it. If you are willing to build efficient data science applications and bring them in the enterprise environment without changing the existing stack, this book is for you! What You Will Learn Get a solid understanding of the data processing toolbox available in Java Explore the data science ecosystem available in Java Find out how to approach different machine learning problems with Java Process unstructured information such as natural language text or images Create your own search engine Get state-of-the-art performance with XGBoost Learn how to build deep neural networks with DeepLearning4j Build applications that scale and process large amounts of data Deploy data science models to production and evaluate their performance In Detail Java is the most popular programming language, according to the TIOBE index, and it is a typical choice for running production systems in many companies, both in the startup world and among large enterprises. Not surprisingly, it is also a common choice for creating data science applications: it is fast and has a great set of data processing tools, both built-in and external. What is more, choosing Java for data science allows you to easily integrate solutions with existing software, and bring data science into production with less effort. This book will teach you how to create data science applications with Java. First, we will revise the most important things when starting a data science application, and then brush up the basics of Java and machine learning before diving into more advanced topics. We start by going over the existing libraries for data processing and libraries with machine learning algorithms. After that, we cover topics such as classification and regression, dimensionality reduction and clustering, information retrieval and natural language processing, and deep learning and big data. Finally, we finish the book by talking about the ways to deploy the model and evaluate it in production settings. Style and approach This is a practical guide where all the important concepts such as classification, regression, and dimensionality reduction are explained with the help of examples.
Categories: Computers

Machine Learning End to End guide for Java developers

Machine Learning  End to End guide for Java developers

Develop, Implement and Tuneup your Machine Learning applications using the power of Java programming About This Book Detailed coverage on key machine learning topics with an emphasis on both theoretical and practical aspects Address ...

Author: Richard M. Reese

Publisher: Packt Publishing Ltd

ISBN: 9781788629409

Category: Computers

Page: 1159

View: 588

Develop, Implement and Tuneup your Machine Learning applications using the power of Java programming About This Book Detailed coverage on key machine learning topics with an emphasis on both theoretical and practical aspects Address predictive modeling problems using the most popular machine learning Java libraries A comprehensive course covering a wide spectrum of topics such as machine learning and natural language through practical use-cases Who This Book Is For This course is the right resource for anyone with some knowledge of Java programming who wants to get started with Data Science and Machine learning as quickly as possible. If you want to gain meaningful insights from big data and develop intelligent applications using Java, this course is also a must-have. What You Will Learn Understand key data analysis techniques centered around machine learning Implement Java APIs and various techniques such as classification, clustering, anomaly detection, and more Master key Java machine learning libraries, their functionality, and various kinds of problems that can be addressed using each of them Apply machine learning to real-world data for fraud detection, recommendation engines, text classification, and human activity recognition Experiment with semi-supervised learning and stream-based data mining, building high-performing and real-time predictive models Develop intelligent systems centered around various domains such as security, Internet of Things, social networking, and more In Detail Machine Learning is one of the core area of Artificial Intelligence where computers are trained to self-learn, grow, change, and develop on their own without being explicitly programmed. In this course, we cover how Java is employed to build powerful machine learning models to address the problems being faced in the world of Data Science. The course demonstrates complex data extraction and statistical analysis techniques supported by Java, applying various machine learning methods, exploring machine learning sub-domains, and exploring real-world use cases such as recommendation systems, fraud detection, natural language processing, and more, using Java programming. The course begins with an introduction to data science and basic data science tasks such as data collection, data cleaning, data analysis, and data visualization. The next section has a detailed overview of statistical techniques, covering machine learning, neural networks, and deep learning. The next couple of sections cover applying machine learning methods using Java to a variety of chores including classifying, predicting, forecasting, market basket analysis, clustering stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, and deep learning. The last section highlights real-world test cases such as performing activity recognition, developing image recognition, text classification, and anomaly detection. The course includes premium content from three of our most popular books: Java for Data Science Machine Learning in Java Mastering Java Machine Learning On completion of this course, you will understand various machine learning techniques, different machine learning java algorithms you can use to gain data insights, building data models to analyze larger complex data sets, and incubating applications using Java and machine learning algorithms in the field of artificial intelligence. Style and approach This comprehensive course proceeds from being a tutorial to a practical guide, providing an introduction to machine learning and different machine learning techniques, exploring machine learning with Java libraries, and demonstrating real-world machine learning use cases using the Java platform.
Categories: Computers

Java Deep Learning Projects

Java Deep Learning Projects

If you enjoyed this book, you may be interested in these other books by Packt:
Mastering Java Machine Learning Dr. Uday Kamath, Krishna Choppella ISBN:
9781785880513 Master key Java machine learning libraries, and what kind of ...

Author: Md. Rezaul Karim

Publisher: Packt Publishing Ltd

ISBN: 9781788996525

Category: Computers

Page: 436

View: 812

Build and deploy powerful neural network models using the latest Java deep learning libraries Key Features Understand DL with Java by implementing real-world projects Master implementations of various ANN models and build your own DL systems Develop applications using NLP, image classification, RL, and GPU processing Book Description Java is one of the most widely used programming languages. With the rise of deep learning, it has become a popular choice of tool among data scientists and machine learning experts. Java Deep Learning Projects starts with an overview of deep learning concepts and then delves into advanced projects. You will see how to build several projects using different deep neural network architectures such as multilayer perceptrons, Deep Belief Networks, CNN, LSTM, and Factorization Machines. You will get acquainted with popular deep and machine learning libraries for Java such as Deeplearning4j, Spark ML, and RankSys and you’ll be able to use their features to build and deploy projects on distributed computing environments. You will then explore advanced domains such as transfer learning and deep reinforcement learning using the Java ecosystem, covering various real-world domains such as healthcare, NLP, image classification, and multimedia analytics with an easy-to-follow approach. Expert reviews and tips will follow every project to give you insights and hacks. By the end of this book, you will have stepped up your expertise when it comes to deep learning in Java, taking it beyond theory and be able to build your own advanced deep learning systems. What you will learn Master deep learning and neural network architectures Build real-life applications covering image classification, object detection, online trading, transfer learning, and multimedia analytics using DL4J and open-source APIs Train ML agents to learn from data using deep reinforcement learning Use factorization machines for advanced movie recommendations Train DL models on distributed GPUs for faster deep learning with Spark and DL4J Ease your learning experience through 69 FAQs Who this book is for If you are a data scientist, machine learning professional, or deep learning practitioner keen to expand your knowledge by delving into the practical aspects of deep learning with Java, then this book is what you need! Get ready to build advanced deep learning models to carry out complex numerical computations. Some basic understanding of machine learning concepts and a working knowledge of Java are required.
Categories: Computers

Machine Learning in Java

Machine Learning in Java

If you enjoyed this book, you may be interested in these other books by Packt:
Mastering Java Machine Learning Dr. Uday Kamath, Krishna Choppella ISBN:
9781785880513 Master key Java machine learning libraries, and what kind of ...

Author: AshishSingh Bhatia

Publisher: Packt Publishing Ltd

ISBN: 9781788473897

Category: Computers

Page: 300

View: 751

Leverage the power of Java and its associated machine learning libraries to build powerful predictive models Key Features Solve predictive modeling problems using the most popular machine learning Java libraries Explore data processing, machine learning, and NLP concepts using JavaML, WEKA, MALLET libraries Practical examples, tips, and tricks to help you understand applied machine learning in Java Book Description As the amount of data in the world continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of big data and Data Science. The main challenge is how to transform data into actionable knowledge. Machine Learning in Java will provide you with the techniques and tools you need. You will start by learning how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. The code in this book works for JDK 8 and above, the code is tested on JDK 11. Moving on, you will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text analysis. By the end of the book, you will have explored related web resources and technologies that will help you take your learning to the next level. By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data. What you will learn Discover key Java machine learning libraries Implement concepts such as classification, regression, and clustering Develop a customer retention strategy by predicting likely churn candidates Build a scalable recommendation engine with Apache Mahout Apply machine learning to fraud, anomaly, and outlier detection Experiment with deep learning concepts and algorithms Write your own activity recognition model for eHealth applications Who this book is for If you want to learn how to use Java's machine learning libraries to gain insight from your data, this book is for you. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications with ease. You should be familiar with Java programming and some basic data mining concepts to make the most of this book, but no prior experience with machine learning is required.
Categories: Computers

Java Data Science Made Easy

Java  Data Science Made Easy

Data collection, processing, analysis, and more About This Book Your entry ticket to the world of data science with the stability and power of Java Explore, analyse, and visualize your data effectively using easy-to-follow examples A highly ...

Author: Richard M. Reese

Publisher: Packt Publishing Ltd

ISBN: 9781788479189

Category: Computers

Page: 715

View: 534

Data collection, processing, analysis, and more About This Book Your entry ticket to the world of data science with the stability and power of Java Explore, analyse, and visualize your data effectively using easy-to-follow examples A highly practical course covering a broad set of topics - from the basics of Machine Learning to Deep Learning and Big Data frameworks. Who This Book Is For This course is meant for Java developers who are comfortable developing applications in Java, and now want to enter the world of data science or wish to build intelligent applications. Aspiring data scientists with some understanding of the Java programming language will also find this book to be very helpful. If you are willing to build efficient data science applications and bring them in the enterprise environment without changing your existing Java stack, this book is for you! What You Will Learn Understand the key concepts of data science Explore the data science ecosystem available in Java Work with the Java APIs and techniques used to perform efficient data analysis Find out how to approach different machine learning problems with Java Process unstructured information such as natural language text or images, and create your own search Learn how to build deep neural networks with DeepLearning4j Build data science applications that scale and process large amounts of data Deploy data science models to production and evaluate their performance In Detail Data science is concerned with extracting knowledge and insights from a wide variety of data sources to analyse patterns or predict future behaviour. It draws from a wide array of disciplines including statistics, computer science, mathematics, machine learning, and data mining. In this course, we cover the basic as well as advanced data science concepts and how they are implemented using the popular Java tools and libraries.The course starts with an introduction of data science, followed by the basic data science tasks of data collection, data cleaning, data analysis, and data visualization. This is followed by a discussion of statistical techniques and more advanced topics including machine learning, neural networks, and deep learning. You will examine the major categories of data analysis including text, visual, and audio data, followed by a discussion of resources that support parallel implementation. Throughout this course, the chapters will illustrate a challenging data science problem, and then go on to present a comprehensive, Java-based solution to tackle that problem. You will cover a wide range of topics – from classification and regression, to dimensionality reduction and clustering, deep learning and working with Big Data. Finally, you will see the different ways to deploy the model and evaluate it in production settings. By the end of this course, you will be up and running with various facets of data science using Java, in no time at all. This course contains premium content from two of our recently published popular titles: Java for Data Science Mastering Java for Data Science Style and approach This course follows a tutorial approach, providing examples of each of the concepts covered. With a step-by-step instructional style, this book covers various facets of data science and will get you up and running quickly.
Categories: Computers

Deep Learning for NLP and Speech Recognition

Deep Learning for NLP and Speech Recognition

Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape ...

Author: Uday Kamath

Publisher: Springer

ISBN: 9783030145965

Category: Computers

Page: 621

View: 568

This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.
Categories: Computers

Neuronale Netze Selbst Programmieren

Neuronale Netze Selbst Programmieren

- Tariq Rashid hat eine besondere Fähigkeit, schwierige Konzepte verständlich zu erklären, dadurch werden Neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Author: Tariq Rashid

Publisher:

ISBN: 1492064041

Category:

Page: 232

View: 312

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Dennoch verstehen nur wenige, wie Neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie Neuronale Netze arbeiten. Dafür brauchen Sie keine tieferen Mathematik-Kenntnisse, denn alle mathematischen Konzepte werden behutsam und mit vielen Illustrationen erläutert. Dann geht es in die Praxis: Sie programmieren Ihr eigenes Neuronales Netz mit Python und bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. Zum Schluss lassen Sie das Netz noch auf einem Raspberry Pi Zero laufen. - Tariq Rashid hat eine besondere Fähigkeit, schwierige Konzepte verständlich zu erklären, dadurch werden Neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.
Categories:

Mastering Machine Learning with Spark 2 x

Mastering Machine Learning with Spark 2 x

Then this is the book for you! In this book, you will create scalable machine learning applications to power a modern data-driven business using Spark.

Author: Alex Tellez

Publisher: Packt Publishing Ltd

ISBN: 9781785282416

Category: Computers

Page: 340

View: 753

Unlock the complexities of machine learning algorithms in Spark to generate useful data insights through this data analysis tutorial About This Book Process and analyze big data in a distributed and scalable way Write sophisticated Spark pipelines that incorporate elaborate extraction Build and use regression models to predict flight delays Who This Book Is For Are you a developer with a background in machine learning and statistics who is feeling limited by the current slow and “small data” machine learning tools? Then this is the book for you! In this book, you will create scalable machine learning applications to power a modern data-driven business using Spark. We assume that you already know the machine learning concepts and algorithms and have Spark up and running (whether on a cluster or locally) and have a basic knowledge of the various libraries contained in Spark. What You Will Learn Use Spark streams to cluster tweets online Run the PageRank algorithm to compute user influence Perform complex manipulation of DataFrames using Spark Define Spark pipelines to compose individual data transformations Utilize generated models for off-line/on-line prediction Transfer the learning from an ensemble to a simpler Neural Network Understand basic graph properties and important graph operations Use GraphFrames, an extension of DataFrames to graphs, to study graphs using an elegant query language Use K-means algorithm to cluster movie reviews dataset In Detail The purpose of machine learning is to build systems that learn from data. Being able to understand trends and patterns in complex data is critical to success; it is one of the key strategies to unlock growth in the challenging contemporary marketplace today. With the meteoric rise of machine learning, developers are now keen on finding out how can they make their Spark applications smarter. This book gives you access to transform data into actionable knowledge. The book commences by defining machine learning primitives by the MLlib and H2O libraries. You will learn how to use Binary classification to detect the Higgs Boson particle in the huge amount of data produced by CERN particle collider and classify daily health activities using ensemble Methods for Multi-Class Classification. Next, you will solve a typical regression problem involving flight delay predictions and write sophisticated Spark pipelines. You will analyze Twitter data with help of the doc2vec algorithm and K-means clustering. Finally, you will build different pattern mining models using MLlib, perform complex manipulation of DataFrames using Spark and Spark SQL, and deploy your app in a Spark streaming environment. Style and approach This book takes a practical approach to help you get to grips with using Spark for analytics and to implement machine learning algorithms. We'll teach you about advanced applications of machine learning through illustrative examples. These examples will equip you to harness the potential of machine learning, through Spark, in a variety of enterprise-grade systems.
Categories: Computers

Mastering Concurrency Programming with Java 8

Mastering Concurrency Programming with Java 8

Master the principles and techniques of multithreaded programming with the Java 8 Concurrency API About This Book Implement concurrent applications using the Java 8 Concurrency API and its new components Improve the performance of your ...

Author: Javier Fernández González

Publisher: Packt Publishing Ltd

ISBN: 9781785885464

Category: Computers

Page: 430

View: 425

Master the principles and techniques of multithreaded programming with the Java 8 Concurrency API About This Book Implement concurrent applications using the Java 8 Concurrency API and its new components Improve the performance of your applications or process more data at the same time, taking advantage of all of your resources. Construct real-world examples related to machine learning, data mining, image processing, and client/server environments Who This Book Is For If you are a competent Java developer with a good understanding of concurrency but have no knowledge of how to effectively implement concurrent programs or use streams to make processes more efficient, then this book is for you. What You Will Learn Design concurrent applications by converting a sequential algorithm into a concurrent one Discover how to avoid all the possible problems you can get in concurrent algorithms Use the Executor framework to manage concurrent tasks without creating threads Extend and modify Executors to adapt their behavior to your needs Solve problems using the divide and conquer technique and the Fork/Join framework Process massive data sets with parallel streams and Map/Reduce implementation Control data-race conditions using concurrent data structures and synchronization mechanisms Test and monitor concurrent applications In Detail Concurrency programming allows several large tasks to be divided into smaller sub-tasks, which are further processed as individual tasks that run in parallel. All the sub-tasks are combined together once the required results are achieved; they are then merged to get the final output. The whole process is very complex. This process goes from the design of concurrent algorithms to the testing phase where concurrent applications need extra attention. Java includes a comprehensive API with a lot of ready-to-use components to implement powerful concurrency applications in an easy way, but with a high flexibility to adapt these components to your needs. The book starts with a full description of design principles of concurrent applications and how to parallelize a sequential algorithm. We'll show you how to use all the components of the Java Concurrency API from basics to the most advanced techniques to implement them in powerful concurrency applications in Java. You will be using real-world examples of complex algorithms related to machine learning, data mining, natural language processing, image processing in client / server environments. Next, you will learn how to use the most important components of the Java 8 Concurrency API: the Executor framework to execute multiple tasks in your applications, the phaser class to implement concurrent tasks divided into phases, and the Fork/Join framework to implement concurrent tasks that can be split into smaller problems (using the divide and conquer technique). Toward the end, we will cover the new inclusions in Java 8 API, the Map and Reduce model, and the Map and Collect model. The book will also teach you about the data structures and synchronization utilities to avoid data-race conditions and other critical problems. Finally, the book ends with a detailed description of the tools and techniques that you can use to test a Java concurrent application. Style and approach A complete guide implementing real-world examples with algorithms related to machine learning, data mining, and natural language processing in client/server environments. All the examples are explained in a step-by-step approach.
Categories: Computers

Mastering Scala Machine Learning

Mastering Scala Machine Learning

Advance your skills in efficient data analysis and data processing using the powerful tools of Scala, Spark, and Hadoop About This Book This is a primer on functional-programming-style techniques to help you efficiently process and analyze ...

Author: Alex Kozlov

Publisher: Packt Publishing Ltd

ISBN: 9781785885266

Category: Computers

Page: 310

View: 439

Advance your skills in efficient data analysis and data processing using the powerful tools of Scala, Spark, and Hadoop About This Book This is a primer on functional-programming-style techniques to help you efficiently process and analyze all of your data Get acquainted with the best and newest tools available such as Scala, Spark, Parquet and MLlib for machine learning Learn the best practices to incorporate new Big Data machine learning in your data-driven enterprise to gain future scalability and maintainability Who This Book Is For Mastering Scala Machine Learning is intended for enthusiasts who want to plunge into the new pool of emerging techniques for machine learning. Some familiarity with standard statistical techniques is required. What You Will Learn Sharpen your functional programming skills in Scala using REPL Apply standard and advanced machine learning techniques using Scala Get acquainted with Big Data technologies and grasp why we need a functional approach to Big Data Discover new data structures, algorithms, approaches, and habits that will allow you to work effectively with large amounts of data Understand the principles of supervised and unsupervised learning in machine learning Work with unstructured data and serialize it using Kryo, Protobuf, Avro, and AvroParquet Construct reliable and robust data pipelines and manage data in a data-driven enterprise Implement scalable model monitoring and alerts with Scala In Detail Since the advent of object-oriented programming, new technologies related to Big Data are constantly popping up on the market. One such technology is Scala, which is considered to be a successor to Java in the area of Big Data by many, like Java was to C/C++ in the area of distributed programing. This book aims to take your knowledge to next level and help you impart that knowledge to build advanced applications such as social media mining, intelligent news portals, and more. After a quick refresher on functional programming concepts using REPL, you will see some practical examples of setting up the development environment and tinkering with data. We will then explore working with Spark and MLlib using k-means and decision trees. Most of the data that we produce today is unstructured and raw, and you will learn to tackle this type of data with advanced topics such as regression, classification, integration, and working with graph algorithms. Finally, you will discover at how to use Scala to perform complex concept analysis, to monitor model performance, and to build a model repository. By the end of this book, you will have gained expertise in performing Scala machine learning and will be able to build complex machine learning projects using Scala. Style and approach This hands-on guide dives straight into implementing Scala for machine learning without delving much into mathematical proofs or validations. There are ample code examples and tricks that will help you sail through using the standard techniques and libraries. This book provides practical examples from the field on how to correctly tackle data analysis problems, particularly for modern Big Data datasets.
Categories: Computers

Machine Learning Algorithms

Machine Learning Algorithms

The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science.

Author: Giuseppe Bonaccorso

Publisher: Packt Publishing Ltd

ISBN: 9781785884511

Category: Computers

Page: 360

View: 696

Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.
Categories: Computers

Mastering Concurrency Programming with Java 9

Mastering Concurrency Programming with Java 9

Master the principles to make applications robust, scalable and responsive About This Book Implement concurrent applications using the Java 9 Concurrency API and its new components Improve the performance of your applications and process ...

Author: Javier Fernandez Gonzalez

Publisher: Packt Publishing Ltd

ISBN: 9781785887451

Category: Computers

Page: 516

View: 446

Master the principles to make applications robust, scalable and responsive About This Book Implement concurrent applications using the Java 9 Concurrency API and its new components Improve the performance of your applications and process more data at the same time, taking advantage of all of your resources Construct real-world examples related to machine learning, data mining, natural language processing, and more Who This Book Is For This book is for competent Java developers who have basic understanding of concurrency, but knowledge of effective implementation of concurrent programs or usage of streams for making processes more efficient is not required What You Will Learn Master the principles that every concurrent application must follow See how to parallelize a sequential algorithm to obtain better performance without data inconsistencies and deadlocks Get the most from the Java Concurrency API components Separate the thread management from the rest of the application with the Executor component Execute phased-based tasks in an efficient way with the Phaser components Solve problems using a parallelized version of the divide and conquer paradigm with the Fork / Join framework Find out how to use parallel Streams and Reactive Streams Implement the “map and reduce” and “map and collect” programming models Control the concurrent data structures and synchronization mechanisms provided by the Java Concurrency API Implement efficient solutions for some actual problems such as data mining, machine learning, and more In Detail Concurrency programming allows several large tasks to be divided into smaller sub-tasks, which are further processed as individual tasks that run in parallel. Java 9 includes a comprehensive API with lots of ready-to-use components for easily implementing powerful concurrency applications, but with high flexibility so you can adapt these components to your needs. The book starts with a full description of the design principles of concurrent applications and explains how to parallelize a sequential algorithm. You will then be introduced to Threads and Runnables, which are an integral part of Java 9's concurrency API. You will see how to use all the components of the Java concurrency API, from the basics to the most advanced techniques, and will implement them in powerful real-world concurrency applications. The book ends with a detailed description of the tools and techniques you can use to test a concurrent Java application, along with a brief insight into other concurrency mechanisms in JVM. Style and approach This is a complete guide that implements real-world examples of algorithms related to machine learning, data mining, and natural language processing in client/server environments. All the examples are explained using a step-by-step approach.
Categories: Computers

Scala Applied Machine Learning

Scala Applied Machine Learning

Leverage the power of Scala and master the art of building, improving, and validating scalable machine learning and AI applications using Scala's most advanced and finest features About This Book Build functional, type-safe routines to ...

Author: Pascal Bugnion

Publisher: Packt Publishing Ltd

ISBN: 9781787124554

Category: Computers

Page: 1265

View: 339

Leverage the power of Scala and master the art of building, improving, and validating scalable machine learning and AI applications using Scala's most advanced and finest features About This Book Build functional, type-safe routines to interact with relational and NoSQL databases with the help of the tutorials and examples provided Leverage your expertise in Scala programming to create and customize your own scalable machine learning algorithms Experiment with different techniques; evaluate their benefits and limitations using real-world financial applications Get to know the best practices to incorporate new Big Data machine learning in your data-driven enterprise and gain future scalability and maintainability Who This Book Is For This Learning Path is for engineers and scientists who are familiar with Scala and want to learn how to create, validate, and apply machine learning algorithms. It will also benefit software developers with a background in Scala programming who want to apply machine learning. What You Will Learn Create Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizations Deploy scalable parallel applications using Apache Spark, loading data from HDFS or Hive Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters Apply key learning strategies to perform technical analysis of financial markets Understand the principles of supervised and unsupervised learning in machine learning Work with unstructured data and serialize it using Kryo, Protobuf, Avro, and AvroParquet Construct reliable and robust data pipelines and manage data in a data-driven enterprise Implement scalable model monitoring and alerts with Scala In Detail This Learning Path aims to put the entire world of machine learning with Scala in front of you. Scala for Data Science, the first module in this course, is a tutorial guide that provides tutorials on some of the most common Scala libraries for data science, allowing you to quickly get up to speed building data science and data engineering solutions. The second course, Scala for Machine Learning guides you through the process of building AI applications with diagrams, formal mathematical notation, source code snippets, and useful tips. A review of the Akka framework and Apache Spark clusters concludes the tutorial. The next module, Mastering Scala Machine Learning, is the final step in this course. It will take your knowledge to next level and help you use the knowledge to build advanced applications such as social media mining, intelligent news portals, and more. After a quick refresher on functional programming concepts using REPL, you will see some practical examples of setting up the development environment and tinkering with data. We will then explore working with Spark and MLlib using k-means and decision trees. By the end of this course, you will be a master at Scala machine learning and have enough expertise to be able to build complex machine learning projects using Scala. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Scala for Data Science, Pascal Bugnion Scala for Machine Learning, Patrick Nicolas Mastering Scala Machine Learning, Alex Kozlov Style and approach A tutorial with complete examples, this course will give you the tools to start building useful data engineering and data science solutions straightaway. This course provides practical examples from the field on how to correctly tackle data analysis problems, particularly for modern Big Data datasets.
Categories: Computers

Mastering Corda

Mastering Corda

With this book, you will: Understand Corda's value proposition and alignment with business strategies--particularly relevant to business executives and architects Dive deep into Corda's architecture and blockchain fundamentals Rapidly gain ...

Author: Jamiel Sheikh

Publisher: "O'Reilly Media, Inc."

ISBN: 9781492047131

Category: Computers

Page: 486

View: 310

Mastering Corda provides you with a consistent, linear, and paced path to learning Corda and building modern enterprise-grade decentralized applications. Using this book, anyone from a complete blockchain beginner to an experienced blockchain or enterprise architect can rapidly understand and write applications like a pro while exploring the technical nuances and intricacies of the Corda platform. Corda is designed for use cases such as finance and investments, supply chain, healthcare, trade finance, insurance, and real estate that require a high-volume of transactions, scalability, and data privacy. If you have basic Java skills, this book will help you understand blockchain and show how you can get started immediately and be involved in the disruption of the future. With this book, you will: Understand Corda's value proposition and alignment with business strategies--particularly relevant to business executives and architects Dive deep into Corda's architecture and blockchain fundamentals Rapidly gain extensive knowledge of and hands-on experience with building Corda applications Compare and contrast Corda with Bitcoin, Ethereum, and Hyperledger Effectively prepare for the Corda certification exam and job interviews involving blockchain Perform data analytics and machine learning on Corda nodes
Categories: Computers

Mastering Concurrency Programming with Java 9 Second Edition

Mastering Concurrency Programming with Java 9   Second Edition

Master the principles to make applications robust, scalable and responsiveAbout This Book* Implement concurrent applications using the Java 9 Concurrency API and its new components* Improve the performance of your applications and process ...

Author: Javier Fernandez Gonzalez

Publisher: Packt Publishing

ISBN: 1785887947

Category: Computers

Page: 516

View: 662

Master the principles to make applications robust, scalable and responsiveAbout This Book* Implement concurrent applications using the Java 9 Concurrency API and its new components* Improve the performance of your applications and process more data at the same time, taking advantage of all of your resources* Construct real-world examples related to machine learning, data mining, natural language processing, and moreWho This Book Is ForThis book is for competent Java developers who have basic understanding of concurrency, but knowledge of effective implementation of concurrent programs or usage of streams for making processes more efficient is not requiredWhat You Will Learn* Master the principles that every concurrent application must follow* See how to parallelize a sequential algorithm to obtain better performance without data inconsistencies and deadlocks* Get the most from the Java Concurrency API components* Separate the thread management from the rest of the application with the Executor component* Execute phased-based tasks in an efficient way with the Phaser components* Solve problems using a parallelized version of the divide and conquer paradigm with the Fork / Join framework* Find out how to use parallel Streams and Reactive Streams* Implement the "map and reduce" and "map and collect" programming models* Control the concurrent data structures and synchronization mechanisms provided by the Java Concurrency API* Implement efficient solutions for some actual problems such as data mining, machine learning, and moreIn DetailConcurrency programming allows several large tasks to be divided into smaller sub-tasks, which are further processed as individual tasks that run in parallel. Java 9 includes a comprehensive API with lots of ready-to-use components for easily implementing powerful concurrency applications, but with high flexibility so you can adapt these components to your needs.The book starts with a full description of the design principles of concurrent applications and explains how to parallelize a sequential algorithm. You will then be introduced to Threads and Runnables, which are an integral part of Java 9's concurrency API. You will see how to use all the components of the Java concurrency API, from the basics to the most advanced techniques, and will implement them in powerful real-world concurrency applications.The book ends with a detailed description of the tools and techniques you can use to test a concurrent Java application, along with a brief insight into other concurrency mechanisms in JVM.Style and approachThis is a complete guide that implements real-world examples of algorithms related to machine learning, data mining, and natural language processing in client/server environments. All the examples are explained using a step-by-step approach.
Categories: Computers

Mastering Python Data Visualization

Mastering Python Data Visualization

By the end of this book, you will be able to effectively solve a broad set of data analysis problems. Style and approach The approach of this book is not step by step, but rather categorical.

Author: Kirthi Raman

Publisher: Packt Publishing Ltd

ISBN: 9781783988334

Category: Computers

Page: 372

View: 473

Generate effective results in a variety of visually appealing charts using the plotting packages in Python About This Book Explore various tools and their strengths while building meaningful representations that can make it easier to understand data Packed with computational methods and algorithms in diverse fields of science Written in an easy-to-follow categorical style, this book discusses some niche techniques that will make your code easier to work with and reuse Who This Book Is For If you are a Python developer who performs data visualization and wants to develop existing knowledge about Python to build analytical results and produce some amazing visual display, then this book is for you. A basic knowledge level and understanding of Python libraries is assumed. What You Will Learn Gather, cleanse, access, and map data to a visual framework Recognize which visualization method is applicable and learn best practices for data visualization Get acquainted with reader-driven narratives and author-driven narratives and the principles of perception Understand why Python is an effective tool to be used for numerical computation much like MATLAB, and explore some interesting data structures that come with it Explore with various visualization choices how Python can be very useful in computation in the field of finance and statistics Get to know why Python is the second choice after Java, and is used frequently in the field of machine learning Compare Python with other visualization approaches using Julia and a JavaScript-based framework such as D3.js Discover how Python can be used in conjunction with NoSQL such as Hive to produce results efficiently in a distributed environment In Detail Python has a handful of open source libraries for numerical computations involving optimization, linear algebra, integration, interpolation, and other special functions using array objects, machine learning, data mining, and plotting. Pandas have a productive environment for data analysis. These libraries have a specific purpose and play an important role in the research into diverse domains including economics, finance, biological sciences, social science, health care, and many more. The variety of tools and approaches available within Python community is stunning, and can bolster and enhance visual story experiences. This book offers practical guidance to help you on the journey to effective data visualization. Commencing with a chapter on the data framework, which explains the transformation of data into information and eventually knowledge, this book subsequently covers the complete visualization process using the most popular Python libraries with working examples. You will learn the usage of Numpy, Scipy, IPython, MatPlotLib, Pandas, Patsy, and Scikit-Learn with a focus on generating results that can be visualized in many different ways. Further chapters are aimed at not only showing advanced techniques such as interactive plotting; numerical, graphical linear, and non-linear regression; clustering and classification, but also in helping you understand the aesthetics and best practices of data visualization. The book concludes with interesting examples such as social networks, directed graph examples in real-life, data structures appropriate for these problems, and network analysis. By the end of this book, you will be able to effectively solve a broad set of data analysis problems. Style and approach The approach of this book is not step by step, but rather categorical. The categories are based on fields such as bioinformatics, statistical and machine learning, financial computation, and linear algebra. This approach is beneficial for the community in many different fields of work and also helps you learn how one approach can make sense across many fields
Categories: Computers

Mastering Apache Storm

Mastering Apache Storm

No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications.

Author: Ankit Jain

Publisher: Packt Publishing Ltd

ISBN: 9781787120402

Category: Computers

Page: 284

View: 957

Master the intricacies of Apache Storm and develop real-time stream processing applications with ease About This Book Exploit the various real-time processing functionalities offered by Apache Storm such as parallelism, data partitioning, and more Integrate Storm with other Big Data technologies like Hadoop, HBase, and Apache Kafka An easy-to-understand guide to effortlessly create distributed applications with Storm Who This Book Is For If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications. What You Will Learn Understand the core concepts of Apache Storm and real-time processing Follow the steps to deploy multiple nodes of Storm Cluster Create Trident topologies to support various message-processing semantics Make your cluster sharing effective using Storm scheduling Integrate Apache Storm with other Big Data technologies such as Hadoop, HBase, Kafka, and more Monitor the health of your Storm cluster In Detail Apache Storm is a real-time Big Data processing framework that processes large amounts of data reliably, guaranteeing that every message will be processed. Storm allows you to scale your data as it grows, making it an excellent platform to solve your big data problems. This extensive guide will help you understand right from the basics to the advanced topics of Storm. The book begins with a detailed introduction to real-time processing and where Storm fits in to solve these problems. You'll get an understanding of deploying Storm on clusters by writing a basic Storm Hello World example. Next we'll introduce you to Trident and you'll get a clear understanding of how you can develop and deploy a trident topology. We cover topics such as monitoring, Storm Parallelism, scheduler and log processing, in a very easy to understand manner. You will also learn how to integrate Storm with other well-known Big Data technologies such as HBase, Redis, Kafka, and Hadoop to realize the full potential of Storm. With real-world examples and clear explanations, this book will ensure you will have a thorough mastery of Apache Storm. You will be able to use this knowledge to develop efficient, distributed real-time applications to cater to your business needs. Style and approach This easy-to-follow guide is full of examples and real-world applications to help you get an in-depth understanding of Apache Storm. This book covers the basics thoroughly and also delves into the intermediate and slightly advanced concepts of application development with Apache Storm.
Categories: Computers

Mastering Clojure Data Analysis

Mastering Clojure Data Analysis

This book is great for those who have experience with Clojure and need to use it to perform data analysis. This book will also be hugely beneficial for readers with basic experience in data analysis and statistics.

Author: Eric Rochester

Publisher: Packt Publishing Ltd

ISBN: 9781783284146

Category: Computers

Page: 340

View: 731

This book consists of a practical, exampleoriented approach that aims to help you learn how to use Clojure for data analysis quickly and efficiently. This book is great for those who have experience with Clojure and need to use it to perform data analysis. This book will also be hugely beneficial for readers with basic experience in data analysis and statistics.
Categories: Computers