Machine Learning with R Cookbook

Analyze data and build predictive models

Author: AshishSingh Bhatia,Yu-Wei, Chiu (David Chiu)

Publisher: Packt Publishing Ltd

ISBN: 1787287807

Category: Computers

Page: 572

View: 5297

DOWNLOAD NOW »

Explore over 110 recipes to analyze data and build predictive models with simple and easy-to-use R code About This Book Apply R to simplify predictive modeling with short and simple code Use machine learning to solve problems ranging from small to big data Build a training and testing dataset, applying different classification methods. Who This Book Is For This book is for data science professionals, data analysts, or people who have used R for data analysis and machine learning who now wish to become the go-to person for machine learning with R. Those who wish to improve the efficiency of their machine learning models and need to work with different kinds of data set will find this book very insightful. What You Will Learn Create and inspect transaction datasets and perform association analysis with the Apriori algorithm Visualize patterns and associations using a range of graphs and find frequent item-sets using the Eclat algorithm Compare differences between each regression method to discover how they solve problems Detect and impute missing values in air quality data Predict possible churn users with the classification approach Plot the autocorrelation function with time series analysis Use the Cox proportional hazards model for survival analysis Implement the clustering method to segment customer data Compress images with the dimension reduction method Incorporate R and Hadoop to solve machine learning problems on big data In Detail Big data has become a popular buzzword across many industries. An increasing number of people have been exposed to the term and are looking at how to leverage big data in their own businesses, to improve sales and profitability. However, collecting, aggregating, and visualizing data is just one part of the equation. Being able to extract useful information from data is another task, and a much more challenging one. Machine Learning with R Cookbook, Second Edition uses a practical approach to teach you how to perform machine learning with R. Each chapter is divided into several simple recipes. Through the step-by-step instructions provided in each recipe, you will be able to construct a predictive model by using a variety of machine learning packages. In this book, you will first learn to set up the R environment and use simple R commands to explore data. The next topic covers how to perform statistical analysis with machine learning analysis and assess created models, covered in detail later on in the book. You'll also learn how to integrate R and Hadoop to create a big data analysis platform. The detailed illustrations provide all the information required to start applying machine learning to individual projects. With Machine Learning with R Cookbook, machine learning has never been easier. Style and approach This is an easy-to-follow guide packed with hands-on examples of machine learning tasks. Each topic includes step-by-step instructions on tackling difficulties faced when applying R to machine learning.
Release

Machine Learning with R Cookbook

Author: Yu-Wei, Chiu (David Chiu)

Publisher: Packt Publishing Ltd

ISBN: 1783982055

Category: Computers

Page: 442

View: 3990

DOWNLOAD NOW »

The R language is a powerful open source functional programming language. At its core, R is a statistical programming language that provides impressive tools to analyze data and create high-level graphics. This book covers the basics of R by setting up a user-friendly programming environment and performing data ETL in R. Data exploration examples are provided that demonstrate how powerful data visualization and machine learning is in discovering hidden relationships. You will then dive into important machine learning topics, including data classification, regression, clustering, association rule mining, and dimension reduction.
Release

Machine Learning with R Cookbook - Second Edition

Author: Ashishsingh Bhatia

Publisher: N.A

ISBN: 9781787284395

Category: Computers

Page: 572

View: 6295

DOWNLOAD NOW »

Explore over 110 recipes to analyze data and build predictive models with simple and easy-to-use R codeAbout This Book* Apply R to simplify predictive modeling with short and simple code* Use machine learning to solve problems ranging from small to big data* Build a training and testing dataset, applying different classification methods.Who This Book Is ForThis book is for data science professionals, data analysts, or people who have used R for data analysis and machine learning who now wish to become the go-to person for machine learning with R. Those who wish to improve the efficiency of their machine learning models and need to work with different kinds of data set will find this book very insightful.What You Will Learn* Create and inspect transaction datasets and perform association analysis with the Apriori algorithm* Visualize patterns and associations using a range of graphs and find frequent item-sets using the Eclat algorithm* Compare differences between each regression method to discover how they solve problems* Detect and impute missing values in air quality data* Predict possible churn users with the classification approach* Plot the autocorrelation function with time series analysis* Use the Cox proportional hazards model for survival analysis* Implement the clustering method to segment customer data* Compress images with the dimension reduction method* Incorporate R and Hadoop to solve machine learning problems on big dataIn DetailBig data has become a popular buzzword across many industries. An increasing number of people have been exposed to the term and are looking at how to leverage big data in their own businesses, to improve sales and profitability. However, collecting, aggregating, and visualizing data is just one part of the equation. Being able to extract useful information from data is another task, and a much more challenging one. Machine Learning with R Cookbook, Second Edition uses a practical approach to teach you how to perform machine learning with R. Each chapter is divided into several simple recipes. Through the step-by-step instructions provided in each recipe, you will be able to construct a predictive model by using a variety of machine learning packages. In this book, you will first learn to set up the R environment and use simple R commands to explore data. The next topic covers how to perform statistical analysis with machine learning analysis and assess created models, covered in detail later on in the book. You'll also learn how to integrate R and Hadoop to create a big data analysis platform. The detailed illustrations provide all the information required to start applying machine learning to individual projects. With Machine Learning with R Cookbook, machine learning has never been easier.Style and approachThis is an easy-to-follow guide packed with hands-on examples of machine learning tasks. Each topic includes step-by-step instructions on tackling difficulties faced when applying R to machine learning.
Release

R Deep Learning Cookbook

Author: Dr. PKS Prakash,Achyutuni Sri Krishna Rao

Publisher: Packt Publishing Ltd

ISBN: 1787127117

Category: Computers

Page: 288

View: 2347

DOWNLOAD NOW »

Powerful, independent recipes to build deep learning models in different application areas using R libraries About This Book Master intricacies of R deep learning packages such as mxnet & tensorflow Learn application on deep learning in different domains using practical examples from text, image and speech Guide to set-up deep learning models using CPU and GPU Who This Book Is For Data science professionals or analysts who have performed machine learning tasks and now want to explore deep learning and want a quick reference that could address the pain points while implementing deep learning. Those who wish to have an edge over other deep learning professionals will find this book quite useful. What You Will Learn Build deep learning models in different application areas using TensorFlow, H2O, and MXnet. Analyzing a Deep boltzmann machine Setting up and Analysing Deep belief networks Building supervised model using various machine learning algorithms Set up variants of basic convolution function Represent data using Autoencoders. Explore generative models available in Deep Learning. Discover sequence modeling using Recurrent nets Learn fundamentals of Reinforcement Leaning Learn the steps involved in applying Deep Learning in text mining Explore application of deep learning in signal processing Utilize Transfer learning for utilizing pre-trained model Train a deep learning model on a GPU In Detail Deep Learning is the next big thing. It is a part of machine learning. It's favorable results in applications with huge and complex data is remarkable. Simultaneously, R programming language is very popular amongst the data miners and statisticians. This book will help you to get through the problems that you face during the execution of different tasks and Understand hacks in deep learning, neural networks, and advanced machine learning techniques. It will also take you through complex deep learning algorithms and various deep learning packages and libraries in R. It will be starting with different packages in Deep Learning to neural networks and structures. You will also encounter the applications in text mining and processing along with a comparison between CPU and GPU performance. By the end of the book, you will have a logical understanding of Deep learning and different deep learning packages to have the most appropriate solutions for your problems. Style and approach Collection of hands-on recipes that would act as your all-time reference for your deep learning needs
Release

R: Recipes for Analysis, Visualization and Machine Learning

Author: Viswa Viswanathan,Shanthi Viswanathan,Atmajitsinh Gohil,Yu-Wei, Chiu (David Chiu)

Publisher: Packt Publishing Ltd

ISBN: 178728879X

Category: Computers

Page: 959

View: 1568

DOWNLOAD NOW »

Get savvy with R language and actualize projects aimed at analysis, visualization and machine learning About This Book Proficiently analyze data and apply machine learning techniques Generate visualizations, develop interactive visualizations and applications to understand various data exploratory functions in R Construct a predictive model by using a variety of machine learning packages Who This Book Is For This Learning Path is ideal for those who have been exposed to R, but have not used it extensively yet. It covers the basics of using R and is written for new and intermediate R users interested in learning. This Learning Path also provides in-depth insights into professional techniques for analysis, visualization, and machine learning with R – it will help you increase your R expertise, regardless of your level of experience. What You Will Learn Get data into your R environment and prepare it for analysis Perform exploratory data analyses and generate meaningful visualizations of the data Generate various plots in R using the basic R plotting techniques Create presentations and learn the basics of creating apps in R for your audience Create and inspect the transaction dataset, performing association analysis with the Apriori algorithm Visualize associations in various graph formats and find frequent itemset using the ECLAT algorithm Build, tune, and evaluate predictive models with different machine learning packages Incorporate R and Hadoop to solve machine learning problems on big data In Detail The R language is a powerful, open source, functional programming language. At its core, R is a statistical programming language that provides impressive tools to analyze data and create high-level graphics. This Learning Path is chock-full of recipes. Literally! It aims to excite you with awesome projects focused on analysis, visualization, and machine learning. We'll start off with data analysis – this will show you ways to use R to generate professional analysis reports. We'll then move on to visualizing our data – this provides you with all the guidance needed to get comfortable with data visualization with R. Finally, we'll move into the world of machine learning – this introduces you to data classification, regression, clustering, association rule mining, and dimension reduction. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: R Data Analysis Cookbook by Viswa Viswanathan and Shanthi Viswanathan R Data Visualization Cookbook by Atmajitsinh Gohil Machine Learning with R Cookbook by Yu-Wei, Chiu (David Chiu) Style and approach This course creates a smooth learning path that will teach you how to analyze data and create stunning visualizations. The step-by-step instructions provided for each recipe in this comprehensive Learning Path will show you how to create machine learning projects with R.
Release

R for Data Science Cookbook

Author: Yu-Wei, Chiu (David Chiu)

Publisher: Packt Publishing Ltd

ISBN: 1784392049

Category: Computers

Page: 452

View: 7088

DOWNLOAD NOW »

Over 100 hands-on recipes to effectively solve real-world data problems using the most popular R packages and techniques About This Book Gain insight into how data scientists collect, process, analyze, and visualize data using some of the most popular R packages Understand how to apply useful data analysis techniques in R for real-world applications An easy-to-follow guide to make the life of data scientist easier with the problems faced while performing data analysis Who This Book Is For This book is for those who are already familiar with the basic operation of R, but want to learn how to efficiently and effectively analyze real-world data problems using practical R packages. What You Will Learn Get to know the functional characteristics of R language Extract, transform, and load data from heterogeneous sources Understand how easily R can confront probability and statistics problems Get simple R instructions to quickly organize and manipulate large datasets Create professional data visualizations and interactive reports Predict user purchase behavior by adopting a classification approach Implement data mining techniques to discover items that are frequently purchased together Group similar text documents by using various clustering methods In Detail This cookbook offers a range of data analysis samples in simple and straightforward R code, providing step-by-step resources and time-saving methods to help you solve data problems efficiently. The first section deals with how to create R functions to avoid the unnecessary duplication of code. You will learn how to prepare, process, and perform sophisticated ETL for heterogeneous data sources with R packages. An example of data manipulation is provided, illustrating how to use the “dplyr” and “data.table” packages to efficiently process larger data structures. We also focus on “ggplot2” and show you how to create advanced figures for data exploration. In addition, you will learn how to build an interactive report using the “ggvis” package. Later chapters offer insight into time series analysis on financial data, while there is detailed information on the hot topic of machine learning, including data classification, regression, clustering, association rule mining, and dimension reduction. By the end of this book, you will understand how to resolve issues and will be able to comfortably offer solutions to problems encountered while performing data analysis. Style and approach This easy-to-follow guide is full of hands-on examples of data analysis with R. Each topic is fully explained beginning with the core concept, followed by step-by-step practical examples, and concluding with detailed explanations of each concept used.
Release

Mastering Machine Learning with R

Author: Cory Lesmeister

Publisher: Packt Publishing Ltd

ISBN: 1783984538

Category: Computers

Page: 400

View: 3438

DOWNLOAD NOW »

Master machine learning techniques with R to deliver insights for complex projects About This Book Get to grips with the application of Machine Learning methods using an extensive set of R packages Understand the benefits and potential pitfalls of using machine learning methods Implement the numerous powerful features offered by R with this comprehensive guide to building an independent R-based ML system Who This Book Is For If you want to learn how to use R's machine learning capabilities to solve complex business problems, then this book is for you. Some experience with R and a working knowledge of basic statistical or machine learning will prove helpful. What You Will Learn Gain deep insights to learn the applications of machine learning tools to the industry Manipulate data in R efficiently to prepare it for analysis Master the skill of recognizing techniques for effective visualization of data Understand why and how to create test and training data sets for analysis Familiarize yourself with fundamental learning methods such as linear and logistic regression Comprehend advanced learning methods such as support vector machines Realize why and how to apply unsupervised learning methods In Detail Machine learning is a field of Artificial Intelligence to build systems that learn from data. Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning to your data. The book starts with introduction to Cross-Industry Standard Process for Data Mining. It takes you through Multivariate Regression in detail. Moving on, you will also address Classification and Regression trees. You will learn a couple of “Unsupervised techniques”. Finally, the book will walk you through text analysis and time series. The book will deliver practical and real-world solutions to problems and variety of tasks such as complex recommendation systems. By the end of this book, you will gain expertise in performing R machine learning and will be able to build complex ML projects using R and its packages. Style and approach This is a book explains complicated concepts with easy to follow theory and real-world, practical applications. It demonstrates the power of R and machine learning extensively while highlighting the constraints.
Release

Bioinformatics with R Cookbook

Author: Paurush Praveen Sinha

Publisher: Packt Publishing Ltd

ISBN: 1783283149

Category: Computers

Page: 340

View: 7508

DOWNLOAD NOW »

This book is an easy-to-follow, stepwise guide to handle real life Bioinformatics problems. Each recipe comes with a detailed explanation to the solution steps. A systematic approach, coupled with lots of illustrations, tips, and tricks will help you as a reader grasp even the trickiest of concepts without difficulty.This book is ideal for computational biologists and bioinformaticians with basic knowledge of R programming, bioinformatics and statistics. If you want to understand various critical concepts needed to develop your computational models in Bioinformatics, then this book is for you. Basic knowledge of R is expected.
Release

Practical Machine Learning Cookbook

Author: Atul Tripathi

Publisher: Packt Publishing Ltd

ISBN: 1785286536

Category: Computers

Page: 570

View: 883

DOWNLOAD NOW »

Resolving and offering solutions to your machine learning problems with R About This Book Implement a wide range of algorithms and techniques for tackling complex data Improve predictions and recommendations to have better levels of accuracy Optimize performance of your machine-learning systems Who This Book Is For This book is for analysts, statisticians, and data scientists with knowledge of fundamentals of machine learning and statistics, who need help in dealing with challenging scenarios faced every day of working in the field of machine learning and improving system performance and accuracy. It is assumed that as a reader you have a good understanding of mathematics. Working knowledge of R is expected. What You Will Learn Get equipped with a deeper understanding of how to apply machine-learning techniques Implement each of the advanced machine-learning techniques Solve real-life problems that are encountered in order to make your applications produce improved results Gain hands-on experience in problem solving for your machine-learning systems Understand the methods of collecting data, preparing data for usage, training the model, evaluating the model's performance, and improving the model's performance In Detail Machine learning has become the new black. The challenge in today's world is the explosion of data from existing legacy data and incoming new structured and unstructured data. The complexity of discovering, understanding, performing analysis, and predicting outcomes on the data using machine learning algorithms is a challenge. This cookbook will help solve everyday challenges you face as a data scientist. The application of various data science techniques and on multiple data sets based on real-world challenges you face will help you appreciate a variety of techniques used in various situations. The first half of the book provides recipes on fairly complex machine-learning systems, where you'll learn to explore new areas of applications of machine learning and improve its efficiency. That includes recipes on classifications, neural networks, unsupervised and supervised learning, deep learning, reinforcement learning, and more. The second half of the book focuses on three different machine learning case studies, all based on real-world data, and offers solutions and solves specific machine-learning issues in each one. Style and approach Following a cookbook approach, we'll teach you how to solve everyday difficulties and struggles you encounter.
Release

Mastering Scientific Computing with R

Author: Paul Gerrard,Radia M. Johnson

Publisher: Packt Publishing Ltd

ISBN: 1783555262

Category: Computers

Page: 432

View: 6642

DOWNLOAD NOW »

If you want to learn how to quantitatively answer scientific questions for practical purposes using the powerful R language and the open source R tool ecosystem, this book is ideal for you. It is ideally suited for scientists who understand scientific concepts, know a little R, and want to be able to start applying R to be able to answer empirical scientific questions. Some R exposure is helpful, but not compulsory.
Release