Machine Learning and Big Data with KDB Q

Machine Learning and Big Data with KDB  Q

This book opens the world of q and kdb+ to a wide audience, as it emphasises solutions to problems of practical importance.

Author: Jan Novotny

Publisher: John Wiley & Sons

ISBN: 9781119404750

Category: Business & Economics

Page: 640

View: 781

Upgrade your programming language to more effectively handle high-frequency data Machine Learning and Big Data with KDB+/Q offers quants, programmers and algorithmic traders a practical entry into the powerful but non-intuitive kdb+ database and q programming language. Ideally designed to handle the speed and volume of high-frequency financial data at sell- and buy-side institutions, these tools have become the de facto standard; this book provides the foundational knowledge practitioners need to work effectively with this rapidly-evolving approach to analytical trading. The discussion follows the natural progression of working strategy development to allow hands-on learning in a familiar sphere, illustrating the contrast of efficiency and capability between the q language and other programming approaches. Rather than an all-encompassing “bible”-type reference, this book is designed with a focus on real-world practicality ­to help you quickly get up to speed and become productive with the language. Understand why kdb+/q is the ideal solution for high-frequency data Delve into “meat” of q programming to solve practical economic problems Perform everyday operations including basic regressions, cointegration, volatility estimation, modelling and more Learn advanced techniques from market impact and microstructure analyses to machine learning techniques including neural networks The kdb+ database and its underlying programming language q offer unprecedented speed and capability. As trading algorithms and financial models grow ever more complex against the markets they seek to predict, they encompass an ever-larger swath of data ­– more variables, more metrics, more responsiveness and altogether more “moving parts.” Traditional programming languages are increasingly failing to accommodate the growing speed and volume of data, and lack the necessary flexibility that cutting-edge financial modelling demands. Machine Learning and Big Data with KDB+/Q opens up the technology and flattens the learning curve to help you quickly adopt a more effective set of tools.
Categories: Business & Economics

Practical Big Data Analytics

Practical Big Data Analytics

Hands-on techniques to implement enterprise analytics and machine learning
using Hadoop, Spark, NoSQL and R Nataraj Dasgupta. Creating the Q
application This section describes the process of creating the kdb+/Q application,
beginning ...

Author: Nataraj Dasgupta

Publisher: Packt Publishing Ltd

ISBN: 9781783554409

Category: Computers

Page: 412

View: 865

Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is for The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.
Categories: Computers



ExaPlan: Queueing-based data placement and provisioning for large tiered
storage systems. In Modeling ... A survey of open source tools for machine
learning with big data in the Hadoop ecosystem. Journal of ... Retrieved June 9,
2016, from RethinkDB. 2016. ...
Retrieved June 9, 2016, from titandb/ Wang, F., Aji, A., Liu,
Q., and Saltz ...

Author: Ganesh Chandra Deka

Publisher: CRC Press

ISBN: 9781498784375

Category: Computers

Page: 408

View: 435

This book discusses the advanced databases for the cloud-based application known as NoSQL. It will explore the recent advancements in NoSQL database technology. Chapters on structured, unstructured and hybrid databases will be included to explore bigdata analytics, bigdata storage and processing. The book is likely to cover a wide range of topics such as cloud computing, social computing, bigdata and advanced databases processing techniques.
Categories: Computers

Database Systems for Advanced Applications

Database Systems for Advanced Applications

ACM (2013) 3. Anagnostopoulos, C., Triantafillou, P.: Query-driven learning for
predictive analytics of data subspace cardinality. ... Ma, Q., Triantafillou, P.: Dbest:
revisiting approximate query processing engines with machine learning models.

Author: Yunmook Nah

Publisher: Springer Nature

ISBN: 9783030594107



View: 883


Neuronale Netze Selbst Programmieren

Neuronale Netze Selbst Programmieren

- Tariq Rashid hat eine besondere Fähigkeit, schwierige Konzepte verständlich zu erklären, dadurch werden Neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Author: Tariq Rashid


ISBN: 1492064041


Page: 232

View: 422

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Dennoch verstehen nur wenige, wie Neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie Neuronale Netze arbeiten. Dafür brauchen Sie keine tieferen Mathematik-Kenntnisse, denn alle mathematischen Konzepte werden behutsam und mit vielen Illustrationen erläutert. Dann geht es in die Praxis: Sie programmieren Ihr eigenes Neuronales Netz mit Python und bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. Zum Schluss lassen Sie das Netz noch auf einem Raspberry Pi Zero laufen. - Tariq Rashid hat eine besondere Fähigkeit, schwierige Konzepte verständlich zu erklären, dadurch werden Neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.