Logic and Discrete Mathematics: A Concise Introduction, Solutions Manual

Author: Willem Conradie,Valentin Goranko,Claudette Robinson

Publisher: John Wiley & Sons

ISBN: 1118762673

Category: Mathematics

Page: 200

View: 3252


Solutions manual to accompany Logic and Discrete Mathematics: A Concise Introduction This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in this accompanying solutions manual.

Exam Prep for: Logic and Discrete Mathematics

Author: David Mason

Publisher: Rico Publications


Category: Education

Page: 800

View: 5320


3,600 Exam Prep questions and answers. Ebooks, Textbooks, Courses, Books Simplified as questions and answers by Rico Publications. Very effective study tools especially when you only have a limited amount of time. They work with your textbook or without a textbook and can help you to review and learn essential terms, people, places, events, and key concepts.

Discrete Mathematics for Computing

Author: Rod Haggarty

Publisher: Editorial Dunken

ISBN: 9780201730470

Category: Computers

Page: 235

View: 6237


This book is a short, concise introduction to key mathematical ideas for computing students which develops their understanding of discrete mathematics and its application in computing. The topics are presented in a well defined, logical order that build upon each other and are constantly reinforced by worked examples. Reliance on students' previous mathematical experience is kept to a minimum, though some basic algebraic manipulation is required. This book is appropriate for CS and Math students in an undergraduate Discrete Math course. The content constitutes an accepted core of mathematics for computer scientists (for example, the formal methods used in computer science draw heavily on the discrete methematical concepts covered here, particularly logic, sets, relations and functions). Emphasis is placed on clear and careful explanations of basic ideas and on building confidence in developing mathematical competence through carefully selected exercises. All chapters conclude with short applications/case studies relevant to computing, which provide further motivation to engage with the mathematical ideas involved, and also demonstrate how the mathematics can be applied in a computing context.

Introductory Discrete Mathematics

Author: V. K . Balakrishnan

Publisher: Courier Corporation

ISBN: 0486140385

Category: Mathematics

Page: 256

View: 7500


This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. More than 200 exercises, many with complete solutions. 1991 edition.

Discrete Mathematics and Combinatorics

Author: Sengadir T.

Publisher: Pearson Education India

ISBN: 9788131714058

Category: Applied mathematics

Page: 568

View: 424


Discrete Mathematics and Combinatorics provides a concise and practical introduction to the core components of discrete mathematics, featuring a balanced mix of basic theories and applications. The book covers both fundamental concepts such as sets and logic, as well as advanced topics such as graph theory and Turing machines. The example-driven approach will help readers in understanding and applying the concepts. Other pedagogical tools - illustrations, practice questions, and suggested reading - facilitate learning and mastering the subject." -- Cover.

Concise Computer Mathematics

Tutorials on Theory and Problems

Author: Ovidiu Bagdasar

Publisher: Springer Science & Business Media

ISBN: 3319017519

Category: Computers

Page: 109

View: 3791


Adapted from a modular undergraduate course on computational mathematics, Concise Computer Mathematics delivers an easily accessible, self-contained introduction to the basic notions of mathematics necessary for a computer science degree. The text reflects the need to quickly introduce students from a variety of educational backgrounds to a number of essential mathematical concepts. The material is divided into four units: discrete mathematics (sets, relations, functions), logic (Boolean types, truth tables, proofs), linear algebra (vectors, matrices and graphics), and special topics (graph theory, number theory, basic elements of calculus). The chapters contain a brief theoretical presentation of the topic, followed by a selection of problems (which are direct applications of the theory) and additional supplementary problems (which may require a bit more work). Each chapter ends with answers or worked solutions for all of the problems.

A Concise Introduction to Pure Mathematics

Author: Martin Liebeck

Publisher: Chapman & Hall/CRC

ISBN: 9781138466838

Category: Logic, Symbolic and mathematical

Page: 301

View: 4085


Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler�s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler�s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.

An Introduction to Discrete Mathematics

Author: Steven Roman

Publisher: Harcourt College Pub

ISBN: 9780155417304

Category: Mathematics

Page: 469

View: 5069


Intended for a one-term course in discrete mathematics, to prepare freshmen and sophomores for further work in computer science as well as mathematics. Sets, proof techniques, logic, combinatorics, and graph theory are covered in concise form. All topics are motivated by concrete examples, often emphasizing the interplay between computer science and mathematics. Examples also illustrate all definitions. Applications and references cover a wide variety of realistic situations. Coverage of mathematical induction includes the stroung form of induction, and new sections have been added on nonhomogeneous recurrence relations and the essentials of probability.

Concise Guide to Formal Methods

Theory, Fundamentals and Industry Applications

Author: Gerard O'Regan

Publisher: Springer

ISBN: 3319640216

Category: Mathematics

Page: 322

View: 4372


This invaluable textbook/reference provides an easy-to-read guide to the fundamentals of formal methods, highlighting the rich applications of formal methods across a diverse range of areas of computing. Topics and features: introduces the key concepts in software engineering, software reliability and dependability, formal methods, and discrete mathematics; presents a short history of logic, from Aristotle’s syllogistic logic and the logic of the Stoics, through Boole’s symbolic logic, to Frege’s work on predicate logic; covers propositional and predicate logic, as well as more advanced topics such as fuzzy logic, temporal logic, intuitionistic logic, undefined values, and the applications of logic to AI; examines the Z specification language, the Vienna Development Method (VDM) and Irish School of VDM, and the unified modelling language (UML); discusses Dijkstra’s calculus of weakest preconditions, Hoare’s axiomatic semantics of programming languages, and the classical approach of Parnas and his tabular expressions; provides coverage of automata theory, probability and statistics, model checking, and the nature of proof and theorem proving; reviews a selection of tools available to support the formal methodist, and considers the transfer of formal methods to industry; includes review questions and highlights key topics in every chapter, and supplies a helpful glossary at the end of the book. This stimulating guide provides a broad and accessible overview of formal methods for students of computer science and mathematics curious as to how formal methods are applied to the field of computing.

A Course on Mathematical Logic

Author: Shashi Mohan Srivastava

Publisher: Springer Science & Business Media

ISBN: 1461457467

Category: Mathematics

Page: 198

View: 2712


This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.