Linear models in statistics

Author: Alvin C. Rencher

Publisher: Wiley-Interscience

ISBN: 9780471315643

Category: Mathematics

Page: 578

View: 1762

DOWNLOAD NOW »

* Graphs, charts, and tables as well as extensive references
Release

Generalized Linear Mixed Models

Author: Charles E. McCulloch

Publisher: IMS

ISBN: 9780940600546

Category: Mathematics

Page: 84

View: 6635

DOWNLOAD NOW »

Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models
Release

Foundations of Linear and Generalized Linear Models

Author: Alan Agresti

Publisher: John Wiley & Sons

ISBN: 1118730038

Category: Mathematics

Page: 444

View: 3255

DOWNLOAD NOW »

"This book presents an overview of the foundations and the key ideas and results of linear and generalized linear models under one cover. Written by a prolific academic, researcher, and textbook writer, Foundations of Linear and Generalized Linear Modelsis soon to become the gold standard by which all existing textbooks on the topic will be compared. While the emphasis is clearly and succinctly on theoretical underpinnings, applications in "R" are presented when they help to elucidate the content or promote practical model building. Each chapter contains approximately 15-20 exercises, primarily for readers to practice and extend the theory, but, also to assimilate the ideas by doing some data analysis. The carefully crafted models and examples convey basic concepts and do not get mired down in non-trivial considerations. An author-maintained web site includes, among other numerous pedagogical supplements, analyses that parallel the "R" routines from the book in SAS, SPSS and Stata"--
Release

Linear Models

Author: Shayle R. Searle,Marvin H. J. Gruber

Publisher: John Wiley & Sons

ISBN: 1118952847

Category: Mathematics

Page: 696

View: 7529

DOWNLOAD NOW »

Provides an easy-to-understand guide to statistical linear models and its uses in data analysis This book defines a broad spectrum of statistical linear models that is useful in the analysis of data. Considerable rewriting was done to make the book more reader friendly than the first edition. Linear Models, Second Edition is written in such a way as to be self-contained for a person with a background in basic statistics, calculus and linear algebra. The text includes numerous applied illustrations, numerical examples, and exercises, now augmented with computer outputs in SAS and R. Also new to this edition is: • A greatly improved internal design and format • A short introductory chapter to ease understanding of the order in which topics are taken up • Discussion of additional topics including multiple comparisons and shrinkage estimators • Enhanced discussions of generalized inverses, the MINQUE, Bayes and Maximum Likelihood estimators for estimating variance components Furthermore, in this edition, the second author adds many pedagogical elements throughout the book. These include numbered examples, end-of-example and end-of-proof symbols, selected hints and solutions to exercises available on the book’s website, and references to “big data” in everyday life. Featuring a thorough update, Linear Models, Second Edition includes: • A new internal format, additional instructional pedagogy, selected hints and solutions to exercises, and several more real-life applications • Many examples using SAS and R with timely data sets • Over 400 examples and exercises throughout the book to reinforce understanding Linear Models, Second Edition is a textbook and a reference for upper-level undergraduate and beginning graduate-level courses on linear models, statisticians, engineers, and scientists who use multiple regression or analysis of variance in their work. SHAYLE R. SEARLE, PhD, was Professor Emeritus of Biometry at Cornell University. He was the author of the first edition of Linear Models, Linear Models for Unbalanced Data, and Generalized, Linear, and Mixed Models (with Charles E. McCulloch), all from Wiley. The first edition of Linear Models appears in the Wiley Classics Library. MARVIN H. J. GRUBER, PhD, is Professor Emeritus at Rochester Institute of Technology, School of Mathematical Sciences. Dr. Gruber has written a number of papers and has given numerous presentations at professional meetings during his tenure as a professor at RIT. His fields of interest include regression estimators and the improvement of their efficiency using shrinkage estimators. He has written and published two books on this topic. Another of his books, Matrix Algebra for Linear Models, also published by Wiley, provides good preparation for studying Linear Models. He is a member of the American Mathematical Society, the Institute of Mathematical Statistics and the American Statistical Association.
Release

Bayesian estimation and experimental design in linear regression models

Author: Jürgen Pilz

Publisher: John Wiley & Sons Inc

ISBN: N.A

Category: Mathematics

Page: 296

View: 8115

DOWNLOAD NOW »

Presents a clear treatment of the design and analysis of linear regression experiments in the presence of prior knowledge about the model parameters. Develops a unified approach to estimation and design; provides a Bayesian alternative to the least squares estimator; and indicates methods for the construction of optimal designs for the Bayes estimator. Material is also applicable to some well-known estimators using prior knowledge that is not available in the form of a prior distribution for the model parameters; such as mixed linear, minimax linear and ridge-type estimators.
Release

Linear Statistical Models

Author: James H. Stapleton

Publisher: John Wiley & Sons

ISBN: 0470231467

Category: Mathematics

Page: 474

View: 2000

DOWNLOAD NOW »

Praise for the First Edition "This impressive and eminently readable text . . . [is] a welcome addition to the statistical literature." The Indian Journal of Statistics Revised to reflect the current developments on the topic, Linear Statistical Models, Second Edition provides an up–to–date approach to various statistical model concepts. The book includes clear discussions that illustrate key concepts in an accessible and interesting format while incorporating the most modern software applications. This Second Edition follows an introduction–theorem–proof–examples format that allows for easier comprehension of how to use the methods and recognize the associated assumptions and limits. In addition to discussions on the methods of random vectors, multiple regression techniques, simultaneous confidence intervals, and analysis of frequency data, new topics such as mixed models and curve fitting of models have been added to thoroughly update and modernize the book. Additional topical coverage includes: An introduction to R and S–Plus® with many examples Multiple comparison procedures Estimation of quantiles for regression models An emphasis on vector spaces and the corresponding geometry Extensive graphical displays accompany the book′s updated descriptions and examples, which can be simulated using R, S–Plus®, and SAS® code. Problems at the end of each chapter allow readers to test their understanding of the presented concepts, and additional data sets are available via the book′s FTP site. Linear Statistical Models, Second Edition is an excellent book for courses on linear models at the upper–undergraduate and graduate levels. It also serves as a comprehensive reference for statisticians, engineers, and scientists who apply multiple regression or analysis of variance in their everyday work.
Release

Introduction to Linear Regression Analysis

Author: Douglas C. Montgomery,Elizabeth A. Peck,G. Geoffrey Vining

Publisher: John Wiley & Sons

ISBN: 1119180171

Category: Mathematics

Page: 672

View: 5651

DOWNLOAD NOW »

Praise for the Fourth Edition "As with previous editions, the authors have produced a leadingtextbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to thefundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Editioncontinues to present both the conventional and less common uses oflinear regression in today’s cutting-edge scientificresearch. The authors blend both theory and application to equipreaders with an understanding of the basic principles needed toapply regression model-building techniques in various fields ofstudy, including engineering, management, and the healthsciences. Following a general introduction to regression modeling,including typical applications, a host of technical tools areoutlined such as basic inference procedures, introductory aspectsof model adequacy checking, and polynomial regression models andtheir variations. The book then discusses how transformations andweighted least squares can be used to resolve problems of modelinadequacy and also how to deal with influential observations. TheFifth Edition features numerous newly added topics,including: A chapter on regression analysis of time series data thatpresents the Durbin-Watson test and other techniques for detectingautocorrelation as well as parameter estimation in time seriesregression models Regression models with random effects in addition to adiscussion on subsampling and the importance of the mixedmodel Tests on individual regression coefficients and subsets ofcoefficients Examples of current uses of simple linear regression models andthe use of multiple regression models for understanding patientsatisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors haveincorporated JMP and the freely available R software to illustratethe discussed techniques and procedures in this new edition.Numerous exercises have been added throughout, allowing readers totest their understanding of the material. Introduction to Linear Regression Analysis, Fifth Editionis an excellent book for statistics and engineering courses onregression at the upper-undergraduate and graduate levels. The bookalso serves as a valuable, robust resource for professionals in thefields of engineering, life and biological sciences, and the socialsciences.
Release