Linear Mixed Models

A Practical Guide Using Statistical Software, Second Edition

Author: Brady T. West,Kathleen B. Welch,Andrzej T Galecki

Publisher: CRC Press

ISBN: 1466560991

Category: Mathematics

Page: 440

View: 4982

DOWNLOAD NOW »

Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues to lead readers step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data analysts in all fields. It also updates the case studies using the latest versions of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, Stata, R/S-plus, and HLM. New to the Second Edition A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models Power analysis methods for longitudinal and clustered study designs, including software options for power analyses and suggested approaches to writing simulations Use of the lmer() function in the lme4 R package New sections on fitting LMMs to complex sample survey data and Bayesian approaches to making inferences based on LMMs Updated graphical procedures in the software packages Substantially revised index to enable more efficient reading and easier location of material on selected topics or software options More practical recommendations on using the software for analysis A new R package (WWGbook) that contains all of the data sets used in the examples Ideal for anyone who uses software for statistical modeling, this book eliminates the need to read multiple software-specific texts by covering the most popular software programs for fitting LMMs in one handy guide. The authors illustrate the models and methods through real-world examples that enable comparisons of model-fitting options and results across the software procedures.
Release

Linear Mixed Models

A Practical Guide Using Statistical Software

Author: Brady T. West,Kathleen B. Welch,Andrzej T Galecki

Publisher: CRC Press

ISBN: 9781420010435

Category: Mathematics

Page: 376

View: 4660

DOWNLOAD NOW »

Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav
Release

The SAGE Handbook of Survey Methodology

Author: Christof Wolf,Dominique Joye,Tom E. C. Smith,Tom W Smith,Yang-chih Fu

Publisher: SAGE

ISBN: 1473959055

Category: Reference

Page: 740

View: 3832

DOWNLOAD NOW »

Survey Methodology is becoming a more structured field of research, deserving of more and more academic attention. The SAGE Handbook of Survey Methodology explores both the increasingly scientific endeavour of surveys and their growing complexity, as different data collection modes and information sources are combined. The handbook takes a global approach, with a team of international experts looking at local and national specificities, as well as problems of cross-national, comparative survey research. The chapters are organized into seven major sections, each of which represents a stage in the survey life-cycle: Surveys and Societies Planning a Survey Measurement Sampling Data Collection Preparing Data for Use Assessing and Improving Data Quality The SAGE Handbook of Survey Methodology is a landmark and essential tool for any scholar within the social sciences.
Release

The Palgrave Handbook of Survey Research

Author: David L. Vannette,Jon A. Krosnick

Publisher: Springer

ISBN: 3319543954

Category: Political Science

Page: 676

View: 6873

DOWNLOAD NOW »

This handbook is a comprehensive reference guide for researchers, funding agencies and organizations engaged in survey research. Drawing on research from a world-class team of experts, this collection addresses the challenges facing survey-based data collection today as well as the potential opportunities presented by new approaches to survey research, including in the development of policy. It examines innovations in survey methodology and how survey scholars and practitioners should think about survey data in the context of the explosion of new digital sources of data. The Handbook is divided into four key sections: the challenges faced in conventional survey research; opportunities to expand data collection; methods of linking survey data with external sources; and, improving research transparency and data dissemination, with a focus on data curation, evaluating the usability of survey project websites, and the credibility of survey-based social science. Chapter 23 of this book is open access under a CC BY 4.0 license at link.springer.com.
Release

Advanced Regression Models with SAS and R

Author: Olga Korosteleva

Publisher: CRC Press

ISBN: 1351690078

Category: Mathematics

Page: 14

View: 8735

DOWNLOAD NOW »

Advanced Regression Models with SAS and R exposes the reader to the modern world of regression analysis. The material covered by this book consists of regression models that go beyond linear regression, including models for right-skewed, categorical and hierarchical observations. The book presents the theory as well as fully worked-out numerical examples with complete SAS and R codes for each regression. The emphasis is on model accuracy and the interpretation of results. For each regression, the fitted model is presented along with interpretation of estimated regression coefficients and prediction of response for given values of predictors. Features: Presents the theoretical framework for each regression. Discusses data that are categorical, count, proportions, right-skewed, longitudinal and hierarchical. Uses examples based on real-life consulting projects. Provides complete SAS and R codes for each example. Includes several exercises for every regression. Advanced Regression Models with SAS and R is designed as a text for an upper division undergraduate or a graduate course in regression analysis. Prior exposure to the two software packages is desired but not required. The Author: Olga Korosteleva is a Professor of Statistics at California State University, Long Beach. She teaches a large variety of statistical courses to undergraduate and master’s students. She has published three statistical textbooks. For a number of years, she has held the position of faculty director of the statistical consulting group. Her research interests lie mostly in applications of statistical methodology through collaboration with her clients in health sciences, nursing, kinesiology, and other fields.
Release

Multilevel Modeling of Categorical Outcomes Using IBM SPSS

Author: Ronald H Heck,Scott Thomas,Lynn Tabata

Publisher: Routledge

ISBN: 1136672346

Category: Psychology

Page: 456

View: 7478

DOWNLOAD NOW »

This is the first workbook that introduces the multilevel approach to modeling with categorical outcomes using IBM SPSS Version 20. Readers learn how to develop, estimate, and interpret multilevel models with categorical outcomes. The authors walk readers through data management, diagnostic tools, model conceptualization, and model specification issues related to single-level and multilevel models with categorical outcomes. Screen shots clearly demonstrate techniques and navigation of the program. Modeling syntax is provided in the appendix. Examples of various types of categorical outcomes demonstrate how to set up each model and interpret the output. Extended examples illustrate the logic of model development, interpretation of output, the context of the research questions, and the steps around which the analyses are structured. Readers can replicate examples in each chapter by using the corresponding data and syntax files available at www.psypress.com/9781848729568. The book opens with a review of multilevel with categorical outcomes, followed by a chapter on IBM SPSS data management techniques to facilitate working with multilevel and longitudinal data sets. Chapters 3 and 4 detail the basics of the single-level and multilevel generalized linear model for various types of categorical outcomes. These chapters review underlying concepts to assist with trouble-shooting common programming and modeling problems. Next population-average and unit-specific longitudinal models for investigating individual or organizational developmental processes are developed. Chapter 6 focuses on single- and multilevel models using multinomial and ordinal data followed by a chapter on models for count data. The book concludes with additional trouble shooting techniques and tips for expanding on the modeling techniques introduced. Ideal as a supplement for graduate level courses and/or professional workshops on multilevel, longitudinal, latent variable modeling, multivariate statistics, and/or advanced quantitative techniques taught in psychology, business, education, health, and sociology, this practical workbook also appeals to researchers in these fields. An excellent follow up to the authors’ highly successful Multilevel and Longitudinal Modeling with IBM SPSS and Introduction to Multilevel Modeling Techniques, 2nd Edition, this book can also be used with any multilevel and/or longitudinal book or as a stand-alone text introducing multilevel modeling with categorical outcomes.
Release

Logistic Regression Using SAS

Theory and Application, Second Edition

Author: Paul D. Allison

Publisher: SAS Institute

ISBN: 1607649950

Category: Mathematics

Page: 348

View: 6560

DOWNLOAD NOW »

If you are a researcher or student with experience in multiple linear regression and want to learn about logistic regression, Paul Allison's Logistic Regression Using SAS: Theory and Application, Second Edition, is for you! Informal and nontechnical, this book both explains the theory behind logistic regression, and looks at all the practical details involved in its implementation using SAS. Several real-world examples are included in full detail. This book also explains the differences and similarities among the many generalizations of the logistic regression model. The following topics are covered: binary logistic regression, logit analysis of contingency tables, multinomial logit analysis, ordered logit analysis, discrete-choice analysis, and Poisson regression. Other highlights include discussions on how to use the GENMOD procedure to do loglinear analysis and GEE estimation for longitudinal binary data. Only basic knowledge of the SAS DATA step is assumed. The second edition describes many new features of PROC LOGISTIC, including conditional logistic regression, exact logistic regression, generalized logit models, ROC curves, the ODDSRATIO statement (for analyzing interactions), and the EFFECTPLOT statement (for graphing nonlinear effects). Also new is coverage of PROC SURVEYLOGISTIC (for complex samples), PROC GLIMMIX (for generalized linear mixed models), PROC QLIM (for selection models and heterogeneous logit models), and PROC MDC (for advanced discrete choice models). This book is part of the SAS Press program.
Release

Modelling Binary Data, Second Edition

Author: David Collett

Publisher: CRC Press

ISBN: 1420057383

Category: Mathematics

Page: 408

View: 356

DOWNLOAD NOW »

Since the original publication of the bestselling Modelling Binary Data, a number of important methodological and computational developments have emerged, accompanied by the steady growth of statistical computing. Mixed models for binary data analysis and procedures that lead to an exact version of logistic regression form valuable additions to the statistician's toolbox, and author Dave Collett has fully updated his popular treatise to incorporate these important advances. Modelling Binary Data, Second Edition now provides an even more comprehensive and practical guide to statistical methods for analyzing binary data. Along with thorough revisions to the original material-now independent of any particular software package- it includes a new chapter introducing mixed models for binary data analysis and another on exact methods for modelling binary data. The author has also added material on modelling ordered categorical data and provides a summary of the leading software packages. All of the data sets used in the book are available for download from the Internet, and the appendices include additional data sets useful as exercises.
Release

Extending the Linear Model with R

Generalized Linear, Mixed Effects and Nonparametric Regression Models

Author: Julian J. Faraway

Publisher: CRC Press

ISBN: 9780203492284

Category: Mathematics

Page: 312

View: 794

DOWNLOAD NOW »

Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those fo
Release