Introduction to Time Series and Forecasting

Author: Peter J. Brockwell,Richard A. Davis

Publisher: Springer Science & Business Media

ISBN: 1475725264

Category: Mathematics

Page: 422

View: 9946

DOWNLOAD NOW »

Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.
Release

ITSM for Windows

A User’s Guide to Time Series Modelling and Forecasting

Author: Peter J. Brockwell,Richard A. Davis

Publisher: Springer

ISBN: 1461226767

Category: Computers

Page: 118

View: 3053

DOWNLOAD NOW »

The analysis of time series data is an important aspect of data analysis across a wide range of disciplines, including statistics, mathematics, business, engineering, and the natural and social sciences. This package provides both an introduction to time series analysis and an easy-to-use version of a well-known time series computing package called Interactive Time Series Modelling. The programs in the package are intended as a supplement to the text Time Series: Theory and Methods, 2nd edition, also by Peter J. Brockwell and Richard A. Davis. Many researchers and professionals will appreciate this straightforward approach enabling them to run desk-top analyses of their time series data. Amongst the many facilities available are tools for: ARIMA modelling, smoothing, spectral estimation, multivariate autoregressive modelling, transfer-function modelling, forecasting, and long-memory modelling. This version is designed to run under Microsoft Windows 3.1 or later. It comes with two diskettes: one suitable for less powerful machines (IBM PC 286 or later with 540K available RAM and 1.1 MB of hard disk space) and one for more powerful machines (IBM PC 386 or later with 8MB of RAM and 2.6 MB of hard disk space available).
Release

Time Series Analysis

With Applications in R

Author: Jonathan D. Cryer,Kung-Sik Chan

Publisher: Springer Science & Business Media

ISBN: 038775959X

Category: Mathematics

Page: 491

View: 524

DOWNLOAD NOW »

This book has been developed for a one-semester course usually attended by students in statistics, economics, business, engineering, and quantitative social sciences. A unique feature of this edition is its integration with the R computing environment. Basic applied statistics is assumed through multiple regression. Calculus is assumed only to the extent of minimizing sums of squares but a calculus-based introduction to statistics is necessary for a thorough understanding of some of the theory. Actual time series data drawn from various disciplines are used throughout the book to illustrate the methodology.
Release

Monte Carlo Statistical Methods

Author: Christian Robert,George Casella

Publisher: Springer Science & Business Media

ISBN: 1475741456

Category: Mathematics

Page: 649

View: 4538

DOWNLOAD NOW »

We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.
Release

Introduction to Modern Time Series Analysis

Author: Gebhard Kirchgässner,Jürgen Wolters,Uwe Hassler

Publisher: Springer Science & Business Media

ISBN: 3642334350

Category: Business & Economics

Page: 320

View: 9641

DOWNLOAD NOW »

This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series, bridging the gap between methods and realistic applications. It presents the most important approaches to the analysis of time series, which may be stationary or nonstationary. Modelling and forecasting univariate time series is the starting point. For multiple stationary time series, Granger causality tests and vector autogressive models are presented. As the modelling of nonstationary uni- or multivariate time series is most important for real applied work, unit root and cointegration analysis as well as vector error correction models are a central topic. Tools for analysing nonstationary data are then transferred to the panel framework. Modelling the (multivariate) volatility of financial time series with autogressive conditional heteroskedastic models is also treated.
Release

Time Series: Theory and Methods

Theory and Methods

Author: Peter J. Brockwell,Richard A. Davis,Stephen E. Fienberg

Publisher: Springer Science & Business Media

ISBN: 9780387974293

Category: Business & Economics

Page: 577

View: 1381

DOWNLOAD NOW »

Here is a systematic account of linear time series models and their application to the modeling and prediction of data collected sequentially in time. It details techniques for handling data and offers a thorough understanding of their mathematical basis.
Release

The Analysis of Time Series: Theory and Practice

Author: Christopher Chatfield

Publisher: Springer

ISBN: 1489929258

Category: Mathematics

Page: 263

View: 2818

DOWNLOAD NOW »

Time-series analysis is an area of statistics which is of particular interest at the present time. Time series arise in many different areas, ranging from marketing to oceanography, and the analysis of such series raises many problems of both a theoretical and practical nature. I first became interested in the subject as a postgraduate student at Imperial College, when I attended a stimulating course of lectures on time-series given by Dr. (now Professor) G. M. Jenkins. The subject has fascinated me ever since. Several books have been written on theoretical aspects of time-series analysis. The aim of this book is to provide an introduction to the subject which bridges the gap between theory and practice. The book has also been written to make what is rather a difficult subject as understandable as possible. Enough theory is given to introduce the concepts of time-series analysis and to make the book mathematically interesting. In addition, practical problems are considered so as to help the reader tackle the analysis of real data. The book assumes a knowledge of basic probability theory and elementary statistical inference (see Appendix III). The book can be used as a text for an undergraduate or postgraduate course in time-series, or it can be used for self tuition by research workers. Throughout the book, references are usually given to recent readily accessible books and journals rather than to the original attributive references. Wold's (1965) bibliography contains many time series references published before 1959.
Release

Applied Bayesian Forecasting and Time Series Analysis

Author: Andy Pole,Mike West,Jeff Harrison

Publisher: CRC Press

ISBN: 9780412044014

Category: Mathematics

Page: 480

View: 6060

DOWNLOAD NOW »

Practical in its approach, Applied Bayesian Forecasting and Time Series Analysis provides the theories, methods, and tools necessary for forecasting and the analysis of time series. The authors unify the concepts, model forms, and modeling requirements within the framework of the dynamic linear mode (DLM). They include a complete theoretical development of the DLM and illustrate each step with analysis of time series data. Using real data sets the authors: Explore diverse aspects of time series, including how to identify, structure, explain observed behavior, model structures and behaviors, and interpret analyses to make informed forecasts Illustrate concepts such as component decomposition, fundamental model forms including trends and cycles, and practical modeling requirements for routine change and unusual events Conduct all analyses in the BATS computer programs, furnishing online that program and the more than 50 data sets used in the text The result is a clear presentation of the Bayesian paradigm: quantified subjective judgements derived from selected models applied to time series observations. Accessible to undergraduates, this unique volume also offers complete guidelines valuable to researchers, practitioners, and advanced students in statistics, operations research, and engineering.
Release

Introductory Time Series with R

Author: Paul S.P. Cowpertwait,Andrew V. Metcalfe

Publisher: Springer Science & Business Media

ISBN: 0387886982

Category: Mathematics

Page: 256

View: 4956

DOWNLOAD NOW »

This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/. The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.
Release