Introduction to Lie Algebras

Author: K. Erdmann,Mark J. Wildon

Publisher: Springer Science & Business Media

ISBN: 1846284902

Category: Mathematics

Page: 251

View: 9943

DOWNLOAD NOW »

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.
Release

An Introduction to Quantum and Vassiliev Knot Invariants

Author: David M. Jackson,Iain Moffatt

Publisher: Springer

ISBN: 3030052133

Category: SCIENCE

Page: N.A

View: 5387

DOWNLOAD NOW »

This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.
Release

Representations of Lie Algebras

An Introduction Through gln

Author: Anthony Henderson

Publisher: Cambridge University Press

ISBN: 1139561367

Category: Mathematics

Page: N.A

View: 6429

DOWNLOAD NOW »

This bold and refreshing approach to Lie algebras assumes only modest prerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups and rings), yet it reaches a major result in representation theory: the highest-weight classification of irreducible modules of the general linear Lie algebra. The author's exposition is focused on this goal rather than aiming at the widest generality and emphasis is placed on explicit calculations with bases and matrices. The book begins with a motivating chapter explaining the context and relevance of Lie algebras and their representations and concludes with a guide to further reading. Numerous examples and exercises with full solutions are included. Based on the author's own introductory course on Lie algebras, this book has been thoroughly road-tested by advanced undergraduate and beginning graduate students and it is also suited to individual readers wanting an introduction to this important area of mathematics.
Release

Matrix Groups

An Introduction to Lie Group Theory

Author: Andrew Baker

Publisher: Springer Science & Business Media

ISBN: 1447101839

Category: Mathematics

Page: 330

View: 8067

DOWNLOAD NOW »

This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.
Release

Difference Equations by Differential Equation Methods

Author: Peter E. Hydon

Publisher: Cambridge University Press

ISBN: 1139991701

Category: Mathematics

Page: N.A

View: 8815

DOWNLOAD NOW »

Most well-known solution techniques for differential equations exploit symmetry in some form. Systematic methods have been developed for finding and using symmetries, first integrals and conservation laws of a given differential equation. Here the author explains how to extend these powerful methods to difference equations, greatly increasing the range of solvable problems. Beginning with an introduction to elementary solution methods, the book gives readers a clear explanation of exact techniques for ordinary and partial difference equations. The informal presentation is suitable for anyone who is familiar with standard differential equation methods. No prior knowledge of difference equations or symmetry is assumed. The author uses worked examples to help readers grasp new concepts easily. There are 120 exercises of varying difficulty and suggestions for further reading. The book goes to the cutting edge of research; its many new ideas and methods make it a valuable reference for researchers in the field.
Release

Mathematical Physics

A Modern Introduction to Its Foundations

Author: Sadri Hassani

Publisher: Springer Science & Business Media

ISBN: 3319011952

Category: Science

Page: 1205

View: 1400

DOWNLOAD NOW »

The goal of this book is to expose the reader to the indispensable role that mathematics plays in modern physics. Starting with the notion of vector spaces, the first half of the book develops topics as diverse as algebras, classical orthogonal polynomials, Fourier analysis, complex analysis, differential and integral equations, operator theory, and multi-dimensional Green's functions. The second half of the book introduces groups, manifolds, Lie groups and their representations, Clifford algebras and their representations, and fibre bundles and their applications to differential geometry and gauge theories. This second edition is a substantial revision with a complete rewriting of many chapters and the addition of new ones, including chapters on algebras, representation of Clifford algebras, fibre bundles, and gauge theories. The spirit of the first edition, namely the balance between rigour and physical application, has been maintained, as is the abundance of historical notes and worked out examples that demonstrate the "unreasonable effectiveness of mathematics" in modern physics.
Release

Symmetry, Representations, and Invariants

Author: Roe Goodman,Nolan R. Wallach

Publisher: Springer Science & Business Media

ISBN: 0387798528

Category: Mathematics

Page: 716

View: 5124

DOWNLOAD NOW »

Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.
Release