Interior Point Techniques in Optimization

Complementarity, Sensitivity and Algorithms

Author: B. Jansen

Publisher: Springer Science & Business Media

ISBN: 1475755619

Category: Mathematics

Page: 280

View: 5936

DOWNLOAD NOW »

Operations research and mathematical programming would not be as advanced today without the many advances in interior point methods during the last decade. These methods can now solve very efficiently and robustly large scale linear, nonlinear and combinatorial optimization problems that arise in various practical applications. The main ideas underlying interior point methods have influenced virtually all areas of mathematical programming including: analyzing and solving linear and nonlinear programming problems, sensitivity analysis, complexity analysis, the analysis of Newton's method, decomposition methods, polynomial approximation for combinatorial problems etc. This book covers the implications of interior techniques for the entire field of mathematical programming, bringing together many results in a uniform and coherent way. For the topics mentioned above the book provides theoretical as well as computational results, explains the intuition behind the main ideas, gives examples as well as proofs, and contains an extensive up-to-date bibliography. Audience: The book is intended for students, researchers and practitioners with a background in operations research, mathematics, mathematical programming, or statistics.
Release

Complementarity: Applications, Algorithms and Extensions

Author: Michael C. Ferris,Olvi L. Mangasarian,Jong-Shi Pang

Publisher: Springer Science & Business Media

ISBN: 1475732791

Category: Computers

Page: 404

View: 2416

DOWNLOAD NOW »

This volume presents state-of-the-art complementarity applications, algorithms, extensions and theory in the form of eighteen papers. These at the International Conference on Com invited papers were presented plementarity 99 (ICCP99) held in Madison, Wisconsin during June 9-12, 1999 with support from the National Science Foundation under Grant DMS-9970102. Complementarity is becoming more widely used in a variety of appli cation areas. In this volume, there are papers studying the impact of complementarity in such diverse fields as deregulation of electricity mar kets, engineering mechanics, optimal control and asset pricing. Further more, application of complementarity and optimization ideas to related problems in the burgeoning fields of machine learning and data mining are also covered in a series of three articles. In order to effectively process the complementarity problems that arise in such applications, various algorithmic, theoretical and computational extensions are covered in this volume. Nonsmooth analysis has an im portant role to play in this area as can be seen from articles using these tools to develop Newton and path following methods for constrained nonlinear systems and complementarity problems. Convergence issues are covered in the context of active set methods, global algorithms for pseudomonotone variational inequalities, successive convex relaxation and proximal point algorithms. Theoretical contributions to the connectedness of solution sets and constraint qualifications in the growing area of mathematical programs with equilibrium constraints are also presented. A relaxation approach is given for solving such problems. Finally, computational issues related to preprocessing mixed complementarity problems are addressed.
Release

Hierarchical Optimization and Mathematical Physics

Author: Vladimir Tsurkov

Publisher: Springer Science & Business Media

ISBN: 9780792361756

Category: Science

Page: 310

View: 7844

DOWNLOAD NOW »

This book should be considered as an introduction to a special dass of hierarchical systems of optimal control, where subsystems are described by partial differential equations of various types. Optimization is carried out by means of a two-level scheme, where the center optimizes coordination for the upper level and subsystems find the optimal solutions for independent local problems. The main algorithm is a method of iterative aggregation. The coordinator solves the problern with macrovariables, whose number is less than the number of initial variables. This problern is often very simple. On the lower level, we have the usual optimal control problems of math ematical physics, which are far simpler than the initial statements. Thus, the decomposition (or reduction to problems ofless dimensions) is obtained. The algorithm constructs a sequence of so-called disaggregated solutions that are feasible for the main problern and converge to its optimal solutionunder certain assumptions ( e.g., under strict convexity of the input functions). Thus, we bridge the gap between two disciplines: optimization theory of large-scale systems and mathematical physics. The first motivation was a special model of branch planning, where the final product obeys a preset assortment relation. The ratio coefficient is maximized. Constraints are given in the form of linear inequalities with block diagonal structure of the part of a matrix that corresponds to subsystems. The central coordinator assem bles the final production from the components produced by the subsystems.
Release

Nonlinear Optimization and Related Topics

Author: Gianni Pillo,F. Giannessi

Publisher: Springer Science & Business Media

ISBN: 1475732260

Category: Mathematics

Page: 492

View: 1156

DOWNLOAD NOW »

This volume contains the edited texts of the lectures presented at the Workshop on Nonlinear Optimization held in Erice, Sicily, at the "G. Stampacchia" School of Mathematics of the "E. Majorana" Centre for Scientific Culture, June 23 -July 2, 1998. In the tradition of these meetings, the main purpose was to review and discuss recent advances and promising research trends concerning theory, algorithms and innovative applications in the field of Nonlinear Optimization, and of related topics such as Convex Optimization, Nonsmooth Optimization, Variational Inequalities and Complementarity Problems. The meeting was attended by 83 people from 21 countries. Besides the lectures, several formal and informal discussions took place. The result was a wide and deep knowledge of the present research tendencies in the field. We wish to express our appreciation for the active contribution of all the par ticipants in the meeting. Our gratitude is due to the Ettore Majorana Centre in Erice, which offered its facilities and rewarding environment: its staff was certainly instrumental for the success of the meeting. Our gratitude is also due to Francisco Facchinei and Massimo Roma for the effort and time devoted as members of the Organising Committee. We are indebted to the Italian National Research Council, and in particular to the Group on Functional Analysis and its Applications and to the Committees on Engineering Sciences and on Information Sciences and Technolo gies for their financial support. Finally, we address our thanks to Kluwer Academic Publishers for having offered to publish this volume.
Release

Interior Point Methods of Mathematical Programming

Author: Tamas Terlaky

Publisher: Springer Science & Business Media

ISBN: 9780792342014

Category: Mathematics

Page: 530

View: 758

DOWNLOAD NOW »

One has to make everything as simple as possible but, never more simple. Albert Einstein Discovery consists of seeing what every body has seen and thinking what nobody has thought. Albert S. ent_Gyorgy; The primary goal of this book is to provide an introduction to the theory of Interior Point Methods (IPMs) in Mathematical Programming. At the same time, we try to present a quick overview of the impact of extensions of IPMs on smooth nonlinear optimization and to demonstrate the potential of IPMs for solving difficult practical problems. The Simplex Method has dominated the theory and practice of mathematical pro gramming since 1947 when Dantzig discovered it. In the fifties and sixties several attempts were made to develop alternative solution methods. At that time the prin cipal base of interior point methods was also developed, for example in the work of Frisch (1955), Caroll (1961), Huard (1967), Fiacco and McCormick (1968) and Dikin (1967). In 1972 Klee and Minty made explicit that in the worst case some variants of the simplex method may require an exponential amount of work to solve Linear Programming (LP) problems. This was at the time when complexity theory became a topic of great interest. People started to classify mathematical programming prob lems as efficiently (in polynomial time) solvable and as difficult (NP-hard) problems. For a while it remained open whether LP was solvable in polynomial time or not. The break-through resolution ofthis problem was obtained by Khachijan (1989).
Release

INFOR.

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Electronic data processing

Page: N.A

View: 8474

DOWNLOAD NOW »

Release

Handbook of global optimization

Author: Reiner Horst,Panos M. Pardalos

Publisher: Kluwer Academic Pub

ISBN: 9780792331209

Category: Business & Economics

Page: 880

View: 938

DOWNLOAD NOW »

Global optimization is concerned with the computation and characterization of global optima of nonlinear functions. During the past three decades the field of global optimization has been growing at a rapid pace, and the number of publications on all aspects of global optimization has been increasing steadily. Many applications, as well as new theoretical, algorithmic, and computational contributions have resulted. The Handbook of Global Optimization is the first comprehensive book to cover recent developments in global optimization. Each contribution in the Handbook is essentially expository in nature, but scholarly in its treatment. The chapters cover optimality conditions, complexity results, concave minimization, DC programming, general quadratic programming, nonlinear complementarity, minimax problems, multiplicative programming, Lipschitz optimization, fractional programming, network problems, trajectory methods, homotopy methods, interval methods, and stochastic approaches. The Handbook of Global Optimization is addressed to researchers in mathematical programming, as well as all scientists who use optimization methods to model and solve problems.
Release