Image Reconstruction

Applications in Medical Sciences

Author: Gengsheng Lawrence Zeng

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110500590

Category: Medical

Page: 240

View: 597

DOWNLOAD NOW »

This book introduces the classical and modern image reconstruction technologies. It covers topics in two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. Both analytical and iterative methods are presented. The applications in X-ray CT, SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging) are discussed. Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich’s cone-beam filtered backprojection algorithm, and reconstruction with highly under-sampled data are included. The last chapter of the book is devoted to the techniques of using a fast analytical algorithm to reconstruct an image that is equivalent to an iterative reconstruction. These techniques are the author’s most recent research results. This book is intended for students, engineers, and researchers who are interested in medical image reconstruction. Written in a non-mathematical way, this book provides an easy access to modern mathematical methods in medical imaging. Table of Content: Chapter 1 Basic Principles of Tomography 1.1 Tomography 1.2 Projection 1.3 Image Reconstruction 1.4 Backprojection 1.5 Mathematical Expressions Problems References Chapter 2 Parallel-Beam Image Reconstruction 2.1 Fourier Transform 2.2 Central Slice Theorem 2.3 Reconstruction Algorithms 2.4 A Computer Simulation 2.5 ROI Reconstruction with Truncated Projections 2.6 Mathematical Expressions (The Fourier Transform and Convolution , The Hilbert Transform and the Finite Hilbert Transform , Proof of the Central Slice Theorem, Derivation of the Filtered Backprojection Algorithm , Expression of the Convolution Backprojection Algorithm, Expression of the Radon Inversion Formula ,Derivation of the Backprojection-then-Filtering Algorithm Problems References Chapter 3 Fan-Beam Image Reconstruction 3.1 Fan-Beam Geometry and Point Spread Function 3.2 Parallel-Beam to Fan-Beam Algorithm Conversion 3.3 Short Scan 3.4 Mathematical Expressions (Derivation of a Filtered Backprojection Fan-Beam Algorithm, A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform) Problems References Chapter 4 Transmission and Emission Tomography 4.1 X-Ray Computed Tomography 4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography 4.3 Attenuation Correction for Emission Tomography 4.4 Mathematical Expressions Problems References Chapter 5 3D Image Reconstruction 5.1 Parallel Line-Integral Data 5.2 Parallel Plane-Integral Data 5.3 Cone-Beam Data (Feldkamp's Algorithm, Grangeat's Algorithm, Katsevich's Algorithm) 5.4 Mathematical Expressions (Backprojection-then-Filtering for Parallel Line-Integral Data, Filtered Backprojection Algorithm for Parallel Line-Integral Data, 3D Radon Inversion Formula, 3D Backprojection-then-Filtering Algorithm for Radon Data, Feldkamp's Algorithm, Tuy's Relationship, Grangeat's Relationship, Katsevich’s Algorithm) Problems References Chapter 6 Iterative Reconstruction 6.1 Solving a System of Linear Equations 6.2 Algebraic Reconstruction Technique 6.3 Gradient Descent Algorithms 6.4 Maximum-Likelihood Expectation-Maximization Algorithms 6.5 Ordered-Subset Expectation-Maximization Algorithm 6.6 Noise Handling (Analytical Methods, Iterative Methods, Iterative Methods) 6.7 Noise Modeling as a Likelihood Function 6.8 Including Prior Knowledge 6.9 Mathematical Expressions (ART, Conjugate Gradient Algorithm, ML-EM, OS-EM, Green’s One-Step Late Algorithm, Matched and Unmatched Projector/Backprojector Pairs ) 6.10 Reconstruction Using Highly Undersampled Data with l0 Minimization Problems References Chapter 7 MRI Reconstruction 7.1 The 'M' 7.2 The 'R' 7.3 The 'I'; (To Obtain z-Information, x-Information, y-Information) 7.4 Mathematical Expressions Problems References Indexing
Release

Close-Range Photogrammetry and 3D Imaging

Author: Thomas Luhmann,Stuart Robson,Stephen Kyle,Jan Boehm

Publisher: Walter de Gruyter

ISBN: 3110302780

Category: Science

Page: 702

View: 6988

DOWNLOAD NOW »

This is the second edition of the established guide to close-range photogrammetry which uses accurate imaging techniques to analyse the three-dimensional shape of a wide range of manufactured and natural objects. After more than 20 years of use, close-range photogrammetry, now for the most part entirely digital, has become an accepted, powerful and readily available technique for engineers, scientists and others who wish to utilise images to make accurate 3D measurements of complex objects. Here they will find the photogrammetric fundamentals, details of system hardware and software, and broad range of real-world applications in order to achieve this. Following the introduction, the book provides fundamental mathematics covering subjects such as image orientation, digital imaging processing and 3D reconstruction methods, as well as a discussion of imaging technology, including targeting and illumination, and its implementation in hardware and software. It concludes with an overview of photogrammetric solutions for typical applications in engineering, manufacturing, medical science, architecture, archaeology and other fields.
Release

Handbook of Multimedia Information Security

Techniques and Applications

Author: Amit Kumar Singh (Of Jaypee University of Information Technology)

Publisher: Springer

ISBN: 303015887X

Category: Computer security

Page: 798

View: 6028

DOWNLOAD NOW »

This handbook is organized under three major parts. The first part of this handbook deals with multimedia security for emerging applications. The chapters include basic concepts of multimedia tools and applications, biological and behavioral biometrics, effective multimedia encryption and secure watermarking techniques for emerging applications, an adaptive face identification approach for android mobile devices, and multimedia using chaotic and perceptual hashing function. The second part of this handbook focuses on multimedia processing for various potential applications. The chapter includes a detail survey of image processing based automated glaucoma detection techniques and role of de-noising, recent study of dictionary learning based image reconstruction techniques for analyzing the big medical data, brief introduction of quantum image processing and it applications, a segmentation-less efficient Alzheimer detection approach, object recognition, image enhancements and de-noising techniques for emerging applications, improved performance of image compression approach, and automated detection of eye related diseases using digital image processing. The third part of this handbook introduces multimedia applications. The chapter includes the extensive survey on the role of multimedia in medicine and multimedia forensics classification, a finger based authentication system for e-health security, analysis of recently developed deep learning techniques for emotion and activity recognition. Further, the book introduce a case study on change of ECG according to time for user identification, role of multimedia in big data, cloud computing, the Internet of things (IoT) and blockchain environment in detail for real life applications. This handbook targets researchers, policy makers, programmers and industry professionals in creating new knowledge for developing efficient techniques/framework for multimedia applications. Advanced level students studying computer science, s pecifically security and multimedia will find this book useful as a reference.
Release

Multiphoton Microscopy and Fluorescence Lifetime Imaging

Applications in Biology and Medicine

Author: Karsten König

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 311043007X

Category: Science

Page: 450

View: 2613

DOWNLOAD NOW »

This monograph focuses on modern femtosecond laser microscopes for two photon imaging and nanoprocessing, on laser tweezers for cell micromanipulation as well as on fluorescence lifetime imaging (FLIM) in Life Sciences. The book starts with an introduction by Dr. Wolfgang Kaiser, pioneer of nonlinear optics and ends with the chapter on clinical multiphoton tomography, the novel high resolution imaging technique. It includes a foreword by the nonlinear microscopy expert Dr. Colin Sheppard. Contents Part I: Basics Brief history of fluorescence lifetime imaging The long journey to the laser and its use for nonlinear optics Advanced TCSPC-FLIM techniques Ultrafast lasers in biophotonics Part II: Modern nonlinear microscopy of live cells STED microscopy: exploring fluorescence lifetime gradients for super-resolution at reduced illumination intensities Principles and applications of temporal-focusing wide-field two-photon microscopy FLIM-FRET microscopy TCSPC FLIM and PLIM for metabolic imaging and oxygen sensing Laser tweezers are sources of two-photon effects Metabolic shifts in cell proliferation and differentiation Femtosecond laser nanoprocessing Cryomultiphoton imaging Part III: Nonlinear tissue imaging Multiphoton Tomography (MPT) Clinical multimodal CARS imaging In vivo multiphoton microscopy of human skin Two-photon microscopy and fluorescence lifetime imaging of the cornea Multiscale correlative imaging of the brain Revealing interaction of dyes and nanomaterials by multiphoton imaging Multiphoton FLIM in cosmetic clinical research Multiphoton microscopy and fluorescence lifetime imaging for resection guidance in malignant glioma surgery Non-invasive single-photon and multi-photon imaging of stem cells and cancer cells in mouse models Bedside assessment of multiphoton tomography
Release

Computational Methods for Applied Inverse Problems

Author: Yanfei Wang,Anatoly G. Yagola,Changchun Yang

Publisher: Walter de Gruyter

ISBN: 3110259052

Category: Mathematics

Page: 550

View: 1246

DOWNLOAD NOW »

This monograph reports recent advances of inversion theory and recent developments with practical applications in frontiers of sciences, especially inverse design and novel computational methods for inverse problems. Readers who do research in applied mathematics, engineering, geophysics, biomedicine, image processing, remote sensing, and environmental science will benefit from the contents since the book incorporates a background of using statistical and non-statistical methods, e.g., regularization and optimization techniques for solving practical inverse problems.
Release

Handbook of Multimedia Information Security: Techniques and Applications

Author: Amit Kumar Singh,Anand Mohan

Publisher: Springer

ISBN: 9783030158866

Category: Computers

Page: 808

View: 995

DOWNLOAD NOW »

This handbook is organized under three major parts. The first part of this handbook deals with multimedia security for emerging applications. The chapters include basic concepts of multimedia tools and applications, biological and behavioral biometrics, effective multimedia encryption and secure watermarking techniques for emerging applications, an adaptive face identification approach for android mobile devices, and multimedia using chaotic and perceptual hashing function. The second part of this handbook focuses on multimedia processing for various potential applications. The chapter includes a detail survey of image processing based automated glaucoma detection techniques and role of de-noising, recent study of dictionary learning based image reconstruction techniques for analyzing the big medical data, brief introduction of quantum image processing and it applications, a segmentation-less efficient Alzheimer detection approach, object recognition, image enhancements and de-noising techniques for emerging applications, improved performance of image compression approach, and automated detection of eye related diseases using digital image processing. The third part of this handbook introduces multimedia applications. The chapter includes the extensive survey on the role of multimedia in medicine and multimedia forensics classification, a finger based authentication system for e-health security, analysis of recently developed deep learning techniques for emotion and activity recognition. Further, the book introduce a case study on change of ECG according to time for user identification, role of multimedia in big data, cloud computing, the Internet of things (IoT) and blockchain environment in detail for real life applications. This handbook targets researchers, policy makers, programmers and industry professionals in creating new knowledge for developing efficient techniques/framework for multimedia applications. Advanced level students studying computer science, specifically security and multimedia will find this book useful as a reference.
Release

Theory of Linear Ill-Posed Problems and its Applications

Author: Valentin K. Ivanov,Vladimir V. Vasin,Vitalii P. Tanana

Publisher: Walter de Gruyter

ISBN: 3110944820

Category: Mathematics

Page: 294

View: 5972

DOWNLOAD NOW »

This monograph is a revised and extended version of the Russian edition from 1978. It includes the general theory of linear ill-posed problems concerning e. g. the structure of sets of uniform regularization, the theory of error estimation, and the optimality method. As a distinguishing feature the book considers ill-posed problems not only in Hilbert but also in Banach spaces. It is natural that since the appearance of the first edition considerable progress has been made in the theory of inverse and ill-posed problems as wall as in ist applications. To reflect these accomplishments the authors included additional material e. g. comments to each chapter and a list of monographs with annotations.
Release

Optical Imaging and Photography

Introduction to Science and Technology of Optics, Sensors and Systems

Author: Ulrich Teubner,Hans Josef Brückner

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110472945

Category: Science

Page: 620

View: 6645

DOWNLOAD NOW »

This work is concerned with optical imaging – from simple apertures to complex imaging systems. It spans the range all the way from optical physics to technical optics. For microscopists and photographers it conveys a deeper insight into the intricacies of their daily used devices. Physics and engineering students learn to understand different imaging systems and sensors as well as lenses and errors, image amplification and processing. This introduction into the topic is suitable for beginners and experienced people. It is illustrated by many practical examples and may also be used as a work of reference. The book is useful for everyone employing and assessing imaging systems in general. A special focus is given to photo camera systems.
Release