Image Analysis, Random Fields and Markov Chain Monte Carlo Methods

A Mathematical Introduction

Author: Gerhard Winkler

Publisher: Springer Science & Business Media

ISBN: 3642557600

Category: Mathematics

Page: 387

View: 2864

DOWNLOAD NOW »

"This book is concerned with a probabilistic approach for image analysis, mostly from the Bayesian point of view, and the important Markov chain Monte Carlo methods commonly used....This book will be useful, especially to researchers with a strong background in probability and an interest in image analysis. The author has presented the theory with rigor...he doesn’t neglect applications, providing numerous examples of applications to illustrate the theory." -- MATHEMATICAL REVIEWS
Release

Image Processing for Computer Graphics and Vision

Author: Luiz Velho,Alejandro C. Frery,Jonas Gomes

Publisher: Springer Science & Business Media

ISBN: 1848001932

Category: Computers

Page: 463

View: 2991

DOWNLOAD NOW »

Image processing is concerned with the analysis and manipulation of images by computer. Providing a thorough treatment of image processing with an emphasis on those aspects most used in computer graphics, the authors concentrate on describing and analyzing the underlying concepts rather than on presenting algorithms or pseudocode. As befits a modern introduction to this topic, a good balance is struck between discussing the underlying mathematics and the main topics: signal processing, data discretization, the theory of colour and different colour systems, operations in images, dithering and half-toning, warping and morphing and image processing. This second edition reflects recent trends in science andtechnology that exploit image processing in computer graphics and vision applications. Stochastic image models and statistical methods for image processing are covered as are: A modern approach and new developments in the area, Probability theory for image processing, Applications in image analysis and computer vision.
Release

Image Analysis, Random Fields and Dynamic Monte Carlo Methods

A Mathematical Introduction

Author: Gerhard Winkler

Publisher: Springer Science & Business Media

ISBN: 3642975224

Category: Mathematics

Page: 324

View: 5508

DOWNLOAD NOW »

This text is concerned with a probabilistic approach to image analysis as initiated by U. GRENANDER, D. and S. GEMAN, B.R. HUNT and many others, and developed and popularized by D. and S. GEMAN in a paper from 1984. It formally adopts the Bayesian paradigm and therefore is referred to as 'Bayesian Image Analysis'. There has been considerable and still growing interest in prior models and, in particular, in discrete Markov random field methods. Whereas image analysis is replete with ad hoc techniques, Bayesian image analysis provides a general framework encompassing various problems from imaging. Among those are such 'classical' applications like restoration, edge detection, texture discrimination, motion analysis and tomographic reconstruction. The subject is rapidly developing and in the near future is likely to deal with high-level applications like object recognition. Fascinating experiments by Y. CHOW, U. GRENANDER and D.M. KEENAN (1987), (1990) strongly support this belief.
Release

Parameter Estimation and Uncertainty Quantification in Water Resources Modeling

Author: Philippe Renard,Frederick Delay,Daniel M. Tartakovsky,Velimir V. Vesselinov

Publisher: Frontiers Media SA

ISBN: 2889636747

Category:

Page: N.A

View: 871

DOWNLOAD NOW »

Numerical models of flow and transport processes are heavily employed in the fields of surface, soil, and groundwater hydrology. They are used to interpret field observations, analyze complex and coupled processes, or to support decision making related to large societal issues such as the water-energy nexus or sustainable water management and food production. Parameter estimation and uncertainty quantification are two key features of modern science-based predictions. When applied to water resources, these tasks must cope with many degrees of freedom and large datasets. Both are challenging and require novel theoretical and computational approaches to handle complex models with large number of unknown parameters.
Release

Applied Stochastic Analysis

Author: Weinan E,Tiejun Li,Eric Vanden-Eijnden

Publisher: American Mathematical Soc.

ISBN: 1470449331

Category: Stochastic analysis

Page: 305

View: 513

DOWNLOAD NOW »

This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.
Release

Markov Chain Monte Carlo in Practice

Author: W.R. Gilks,S. Richardson,David Spiegelhalter

Publisher: CRC Press

ISBN: 9780412055515

Category: Mathematics

Page: 512

View: 2965

DOWNLOAD NOW »

In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France, researchers map a rare disease with relatively little variation. Each of these studies applied Markov chain Monte Carlo methods to produce more accurate and inclusive results. General state-space Markov chain theory has seen several developments that have made it both more accessible and more powerful to the general statistician. Markov Chain Monte Carlo in Practice introduces MCMC methods and their applications, providing some theoretical background as well. The authors are researchers who have made key contributions in the recent development of MCMC methodology and its application. Considering the broad audience, the editors emphasize practice rather than theory, keeping the technical content to a minimum. The examples range from the simplest application, Gibbs sampling, to more complex applications. The first chapter contains enough information to allow the reader to start applying MCMC in a basic way. The following chapters cover main issues, important concepts and results, techniques for implementing MCMC, improving its performance, assessing model adequacy, choosing between models, and applications and their domains. Markov Chain Monte Carlo in Practice is a thorough, clear introduction to the methodology and applications of this simple idea with enormous potential. It shows the importance of MCMC in real applications, such as archaeology, astronomy, biostatistics, genetics, epidemiology, and image analysis, and provides an excellent base for MCMC to be applied to other fields as well.
Release

Markov Chain Monte Carlo

Stochastic Simulation for Bayesian Inference, Second Edition

Author: Dani Gamerman,Hedibert F. Lopes

Publisher: CRC Press

ISBN: 9781584885870

Category: Mathematics

Page: 344

View: 1571

DOWNLOAD NOW »

While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration. Major changes from the previous edition: · More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms · Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection · Discussion of computation using both R and WinBUGS · Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web · Sections on spatial models and model adequacy The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses.
Release

Simulation

Author: Sheldon M. Ross

Publisher: Academic Press

ISBN: 0124158250

Category: Computers

Page: 310

View: 986

DOWNLOAD NOW »

"In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"--
Release

Stochastic Processes: Modeling and Simulation

Author: D N Shanbhag,Calyampudi Radhakrishna Rao

Publisher: Gulf Professional Publishing

ISBN: 9780444500137

Category: Mathematics

Page: 1000

View: 4237

DOWNLOAD NOW »

This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.
Release

Markov Chains

Gibbs Fields, Monte Carlo Simulation, and Queues

Author: Pierre Bremaud

Publisher: Springer Science & Business Media

ISBN: 9780387985091

Category: Mathematics

Page: 445

View: 901

DOWNLOAD NOW »

Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.
Release