Gauge Theory of Elementary Particle Physics: Problems and Solutions

Author: Ta-Pei Cheng,,Ling-Fong Li,

Publisher: OUP Oxford

ISBN: 9780198506218

Category: Science

Page: 318

View: 9279


Gauge theory of elementary particle physics was first published in 1984 and has become a standard textbook in the subject. This companion volume provides graduate students with problems and solutions, enabling them to learn the calculational techniques necessary to understand the research literature. Several new topics are also included and the presentation is self-contained, making the book suitable even for those not familiar with the main book.

Introduction to Gauge Field Theories

Author: M. Chaichian,N. F. Nelipa

Publisher: Springer Science & Business Media

ISBN: 3642821774

Category: Science

Page: 332

View: 8137


In recent years, gauge fields have attracted much attention in elementary par ticle physics. The reason is that great progress has been achieved in solving a number of important problems of field theory and elementary particle physics by means of the quantum theory of gauge fields. This refers, in particular, to constructing unified gauge models and theory of strong interactions between the elementary particles. This book expounds the fundamentals of the quantum theory of gauge fields and its application for constructing unified gauge models and the theory of strong interactions. In writing the book, the authors' aim was three-fold: firstly, to outline the basic ideas underlying the unified gauge models and the theory of strong inter actions; secondly, to discuss the major unified gauge models, the theory of strong interactions and their experimental implications; and, thirdly, to acquaint the reader with a rather special mathematical approach (path-in tegral method) which has proved to be well suited for constructing the quantum theory of gauge fields. Gauge fields are a vigorously developing area. In this book, we have select ed for presentation the more or less traditional and commonly accepted mate rial. There also exist a number of different approaches which are presently being developed. The most important of them are touched upon in the Conclusion.

Gauging What's Real

The Conceptual Foundations of Contemporary Gauge Theories

Author: Richard Healey

Publisher: Oxford University Press on Demand

ISBN: 0199287961

Category: Philosophy

Page: 297

View: 2828


Richard Healey presents a ground-breaking study of an area of physics not previously explored by philosophy: gauge theory. Gauge theories have provided our most successful representations of the fundamental forces of nature. But how do such representations work? Healey defends an original answer to this question.

Gauge Theories in Particle Physics

Volume I: From Relativistic Quantum Mechanics to QED, Third Edition

Author: I.J.R. Aitchison,A.J.G. Hey

Publisher: CRC Press

ISBN: 9780849387753

Category: Science

Page: 422

View: 2069


Gauge Theories in Particle Physics, Volume 1: From Relativistic Quantum Mechanics to QED, Third Edition presents an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this two-volume third edition, much of the book has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. Substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons, and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth year courses. Since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended so as to provide a uniquely accessible and self-contained introduction to quantum field dynamics, as described by Feynman graphs. The level is suitable for advanced fourth year undergraduates and first year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED; the second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.

Facts and Mysteries in Elementary Particle Physics

Author: Martinus J G Veltman

Publisher: World Scientific

ISBN: 9813237074


Page: 352

View: 6069


This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson. Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories. This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field. The Chapter on Particle Theory, in a pre-publication, was termed "superbly lucid" by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642). Contents: IntroductionPreliminariesThe Standard ModelQuantum Mechanics. MixingEnergy, Momentum and Mass-ShellDetectionAccelerators and Storage RingsThe CERN Neutrino ExperimentThe Particle ZooParticle TheoryFinding the HiggsQuantum ChromodynamicsEpilogueAddendum Readership: Students, lay people and anyone interested in the world of elementary particles. Keywords: Particle Physics;Quantum Mechanics;Relativity;Quarks;Leptons;Gauge Theories;Higgs ParticleReview: Reviews of the First Edition: "Veltman's life spans the history of particle physics, from Antiparticles to Z bosons. So does his crystal clear book, which tells all you want to know about the strange sub-nuclear world and the stranger scientists that study it ... a thrilling tale about the world's tiniest things." Sheldon Glashow Nobel laureate Boston University "I must congratulate you! The book you have written is truly a masterpiece. Not only have you explained the physics of the world of elementary particles to the young aspiring student, but you have made it available to the intelligent layman. On top of that you gave it the humanity it deserves; reading this book brought me back to the most exciting period of my life in which every day brought a new discovery and we all fought for recognition. I can truly say that there is no book like this." Melvin Schwartz Nobel laureate Columbia University "Veltman's ... transparent explanations of the abstract theories of quantum mechanics and special relativity, his lucid accounts of esoteric subjects in particle physics, such as scaling, Higgs particle and renormalizability ... are very impressive. The book will interest anyone who is interested in the view of the physical world held by contemporary fundamental physicists."T Y Cao Boston University "I greatly enjoyed finally reading a book that goes into the details I always wanted ... Veltman has the courage to try a deeper level about what we understand and what is simply fact ... Even if you have read books popularizing physics befor

Introduction to Physics of Elementary Particles

Author: Oleg Mikhilovich Boyarkin

Publisher: Nova Publishers

ISBN: 9781600212000

Category: Science

Page: 244

View: 4992


In this textbook, all known fundamental interactions are considered and the main directions of their unification are reviewed. The basic theoretical ideas and experiments, which permit establishing a quark-lepton level of matter structure are discussed. A general scheme for the theory of interacting fields with the help of the local gauge invariance principle is given. This scheme is used for presentation of the basic aspects of the quantum chromodynamics and electroweak theory of Weinberg-Salam-Glashow. Principles of operation and designs of accelerators, neutrino telescopes, and elementary particle detectors are considered. The modern theory of the Universe evolution is described.

Constructing Quarks

A Sociological History of Particle Physics

Author: Andrew Pickering

Publisher: University of Chicago Press

ISBN: 9780226667997

Category: Science

Page: 468

View: 4701


Widely regarded as a classic in its field, Constructing Quarks recounts the history of the post-war conceptual development of elementary-particle physics. Inviting a reappraisal of the status of scientific knowledge, Andrew Pickering suggests that scientists are not mere passive observers and reporters of nature. Rather they are social beings as well as active constructors of natural phenomena who engage in both experimental and theoretical practice. "A prodigious piece of scholarship that I can heartily recommend."—Michael Riordan, New Scientist "An admirable history. . . . Detailed and so accurate."—Hugh N. Pendleton, Physics Today

Elementary Particle Physics

Author: I.R. Kenyon

Publisher: Springer Science & Business Media

ISBN: 9780710212344

Category: Science

Page: 312

View: 9527


The last few years have seen particular excitement in particle physics, culminating in the experimental confirmation of the W and Z particles. Ian Kenyon, who was involved in the UA1 experiment at CERN that searched for the particles, provides an introduction to particle physics and takes a refreshingly non-historical approach. The aim of the book has been to concentrate on the 'standard model' and the gauge symmetries because these form the core of the subject. Leptons, quarks and forces are introduced at the beginning. After this introduction the gauge theories are dealt with in order of increasing complexity. Attention is then focussed on the hadrons - deep inelastic scattering of hadrons, then hadron spectroscopy and finally hadron interactions. Current developments beyond the standard model appear in the last chapter.

Mathematical Gauge Theory

With Applications to the Standard Model of Particle Physics

Author: Mark J.D. Hamilton

Publisher: Springer

ISBN: 3319684396

Category: Mathematics

Page: 658

View: 1946


The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of differentiable manifolds and special relativity is required, summarized in the appendix.