Functional and Shape Data Analysis

Author: Anuj Srivastava,Eric P. Klassen

Publisher: Springer

ISBN: 1493940201

Category: Mathematics

Page: 447

View: 623

DOWNLOAD NOW »

This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges. Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves—in one, two, and higher dimensions—both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.
Release

Riemannian Geometric Statistics in Medical Image Analysis

Author: Xavier Pennec,Stefan Sommer,Tom Fletcher

Publisher: Academic Press

ISBN: 0128147253

Category: Computers

Page: 636

View: 7763

DOWNLOAD NOW »

Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Content includes: - The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs - Applications of statistics on manifolds and shape spaces in medical image computing - Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. - A complete reference covering both the foundations and state-of-the-art methods - Edited and authored by leading researchers in the field - Contains theory, examples, applications, and algorithms - Gives an overview of current research challenges and future applications
Release

Applied Functional Data Analysis

Methods and Case Studies

Author: J.O. Ramsay,B.W. Silverman

Publisher: Springer

ISBN: 0387224653

Category: Mathematics

Page: 191

View: 9192

DOWNLOAD NOW »

This book contains the ideas of functional data analysis by a number of case studies. The case studies are accessible to research workers in a wide range of disciplines. Every reader should gain not only a specific understanding of the methods of functional data analysis, but more importantly a general insight into the underlying patterns of thought. There is an associated web site with MATLABr and S?PLUSr implementations of the methods discussed.
Release

Missing and Modified Data in Nonparametric Estimation

With R Examples

Author: Sam Efromovich

Publisher: CRC Press

ISBN: 1351679848

Category: Law

Page: 448

View: 4776

DOWNLOAD NOW »

This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.
Release

Geometry Driven Statistics

Author: Ian L. Dryden,John T. Kent

Publisher: John Wiley & Sons

ISBN: 1118866576

Category: Mathematics

Page: 432

View: 7404

DOWNLOAD NOW »

A timely collection of advanced, original material in the area of statistical methodology motivated by geometric problems, dedicated to the influential work of Kanti V. Mardia This volume celebrates Kanti V. Mardia′s long and influential career in statistics. A common theme unifying much of Mardia s work is the importance of geometry in statistics, and to highlight the areas emphasized in his research this book brings together 16 contributions from high–profile researchers in the field. Geometry Driven Statistics covers a wide range of application areas including directional data, shape analysis, spatial data, climate science, fingerprints, image analysis, computer vision and bioinformatics. The book will appeal to statisticians and others with an interest in data motivated by geometric considerations. Summarizing the state of the art, examining some new developments and presenting a vision for the future, Geometry Driven Statistics will enable the reader to broaden knowledge of important research areas in statistics and gain a new appreciation of the work and influence of Kanti V. Mardia.
Release

Recent Advances in Functional Data Analysis and Related Topics

Author: Frédéric Ferraty

Publisher: Springer Science & Business Media

ISBN: 9783790827361

Category: Mathematics

Page: 322

View: 6792

DOWNLOAD NOW »

New technologies allow us to handle increasingly large datasets, while monitoring devices are becoming ever more sophisticated. This high-tech progress produces statistical units sampled over finer and finer grids. As the measurement points become closer, the data can be considered as observations varying over a continuum. This intrinsic continuous data (called functional data) can be found in various fields of science, including biomechanics, chemometrics, econometrics, environmetrics, geophysics, medicine, etc. The failure of standard multivariate statistics to analyze such functional data has led the statistical community to develop appropriate statistical methodologies, called Functional Data Analysis (FDA). Today, FDA is certainly one of the most motivating and popular statistical topics due to its impact on crucial societal issues (health, environment, etc). This is why the FDA statistical community is rapidly growing, as are the statistical developments . Therefore, it is necessary to organize regular meetings in order to provide a state-of-art review of the recent advances in this fascinating area. This book collects selected and extended papers presented at the second International Workshop of Functional and Operatorial Statistics (Santander, Spain, 16-18 June, 2011), in which many outstanding experts on FDA will present the most relevant advances in this pioneering statistical area. Undoubtedly, these proceedings will be an essential resource for academic researchers, master students, engineers, and practitioners not only in statistics but also in numerous related fields of application.
Release

Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges

5th International Workshop, STACOM 2014, Held in Conjunction with MICCAI 2014, Boston, MA, USA, September 18, 2014, Revised Selected Papers

Author: Oscar Camara,Tommaso Mansi,Mihaela Pop,Kawal Rhode,Maxime Sermesant,Alistair Young

Publisher: Springer

ISBN: 3319146785

Category: Computers

Page: 296

View: 7510

DOWNLOAD NOW »

This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Workshop on Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges, STACOM 2014, held in conjunction with MICCAI 2014, in Boston, MA, USA, in September 2014. The 30 revised full papers were carefully reviewed and selected from numerous submissions. The papers cover a wide range of topics such as sections on cardiac image processing; atlas construction; statistical modelling of cardiac function across different patient populations; cardiac mapping; cardiac computational physiology; model customization; atlas based functional analysis; ontological schemata for data and results; integrated functional and structural analyses; as well as the pre-clinical and clinical applicability of these methods.
Release

Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data

Third International Workshop, STIA 2014, Held in Conjunction with MICCAI 2014, Boston, MA, USA, September 18, 2014, Revised Selected Papers

Author: Stanley Durrleman,Tom Fletcher,Guido Gerig,Marc Niethammer,Xavier Pennec

Publisher: Springer

ISBN: 3319149059

Category: Computers

Page: 89

View: 1850

DOWNLOAD NOW »

This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, STIA 2014, held in conjunction with MICCAI 2014 in Boston, MA, USA, in September 2014. The 7 papers presented in this volume were carefully reviewed and selected from 15 submissions. They are organized in topical sections named: longitudinal registration and shape modeling, longitudinal modeling, reconstruction from longitudinal data, and 4D image processing.
Release

The Statistical Theory of Shape

Author: Christopher G. Small

Publisher: Springer Science & Business Media

ISBN: 1461240328

Category: Mathematics

Page: 230

View: 7476

DOWNLOAD NOW »

In general terms, the shape of an object, data set, or image can be de fined as the total of all information that is invariant under translations, rotations, and isotropic rescalings. Thus two objects can be said to have the same shape if they are similar in the sense of Euclidean geometry. For example, all equilateral triangles have the same shape, and so do all cubes. In applications, bodies rarely have exactly the same shape within measure ment error. In such cases the variation in shape can often be the subject of statistical analysis. The last decade has seen a considerable growth in interest in the statis tical theory of shape. This has been the result of a synthesis of a number of different areas and a recognition that there is considerable common ground among these areas in their study of shape variation. Despite this synthesis of disciplines, there are several different schools of statistical shape analysis. One of these, the Kendall school of shape analysis, uses a variety of mathe matical tools from differential geometry and probability, and is the subject of this book. The book does not assume a particularly strong background by the reader in these subjects, and so a brief introduction is provided to each of these topics. Anyone who is unfamiliar with this material is advised to consult a more complete reference. As the literature on these subjects is vast, the introductory sections can be used as a brief guide to the literature.
Release