Fourier Analysis and Its Applications

Author: G. B. Folland

Publisher: American Mathematical Soc.

ISBN: 9780821847909

Category: Mathematics

Page: 433

View: 2799

DOWNLOAD NOW »

This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
Release

Lectures on the Fourier Transform and Its Applications

Author: Brad G. Osgood

Publisher: American Mathematical Soc.

ISBN: 1470441918

Category: Fourier transformations

Page: 689

View: 3874

DOWNLOAD NOW »

This book is derived from lecture notes for a course on Fourier analysis for engineering and science students at the advanced undergraduate or beginning graduate level. Beyond teaching specific topics and techniques—all of which are important in many areas of engineering and science—the author's goal is to help engineering and science students cultivate more advanced mathematical know-how and increase confidence in learning and using mathematics, as well as appreciate the coherence of the subject. He promises the readers a little magic on every page. The section headings are all recognizable to mathematicians, but the arrangement and emphasis are directed toward students from other disciplines. The material also serves as a foundation for advanced courses in signal processing and imaging. There are over 200 problems, many of which are oriented to applications, and a number use standard software. An unusual feature for courses meant for engineers is a more detailed and accessible treatment of distributions and the generalized Fourier transform. There is also more coverage of higher-dimensional phenomena than is found in most books at this level.
Release

Function Spaces and Partial Differential Equations

Author: Ali Taheri

Publisher: Oxford University Press, USA

ISBN: 0198733151

Category: Differential equations, Partial

Page: 480

View: 5320

DOWNLOAD NOW »

This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.
Release

Function Spaces and Partial Differential Equations

Author: Ali Taheri

Publisher: Oxford University Press, USA

ISBN: 0198733135

Category: Differential equations, Partial

Page: 528

View: 5734

DOWNLOAD NOW »

This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.
Release

Partial Differential Equations and Boundary-value Problems with Applications

Author: Mark A. Pinsky

Publisher: American Mathematical Soc.

ISBN: 0821868896

Category: Mathematics

Page: 526

View: 9772

DOWNLOAD NOW »

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Release

Early Fourier Analysis

Author: Hugh L. Montgomery

Publisher: American Mathematical Soc.

ISBN: 1470415607

Category: Mathematics

Page: 390

View: 9049

DOWNLOAD NOW »

Fourier Analysis is an important area of mathematics, especially in light of its importance in physics, chemistry, and engineering. Yet it seems that this subject is rarely offered to undergraduates. This book introduces Fourier Analysis in its three most classical settings: The Discrete Fourier Transform for periodic sequences, Fourier Series for periodic functions, and the Fourier Transform for functions on the real line. The presentation is accessible for students with just three or four terms of calculus, but the book is also intended to be suitable for a junior-senior course, for a capstone undergraduate course, or for beginning graduate students. Material needed from real analysis is quoted without proof, and issues of Lebesgue measure theory are treated rather informally. Included are a number of applications of Fourier Series, and Fourier Analysis in higher dimensions is briefly sketched. A student may eventually want to move on to Fourier Analysis discussed in a more advanced way, either by way of more general orthogonal systems, or in the language of Banach spaces, or of locally compact commutative groups, but the experience of the classical setting provides a mental image of what is going on in an abstract setting.
Release

Invitation to Classical Analysis

Author: Peter L. Duren

Publisher: American Mathematical Soc.

ISBN: 0821869329

Category: Mathematics

Page: 392

View: 7648

DOWNLOAD NOW »

This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration. Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differential equations including power series solutions at regular singular points, Bessel functions, hypergeometric functions, and Sturm comparison theory. Preliminary chapters offer rapid reviews of basic principles and further background material such as infinite products and commonly applied inequalities. This book is designed for individual study but can also serve as a text for second-semester courses in advanced calculus. Each chapter concludes with an abundance of exercises. Historical notes discuss the evolution of mathematical ideas and their relevance to physical applications. Special features are capsule scientific biographies of the major players and a gallery of portraits. Although this book is designed for undergraduate students, others may find it an accessible source of information on classical topics that underlie modern developments in pure and applied mathematics.
Release

Symplectic Methods in Harmonic Analysis and in Mathematical Physics

Author: Maurice A. de Gosson

Publisher: Springer Science & Business Media

ISBN: 3764399929

Category: Mathematics

Page: 338

View: 2498

DOWNLOAD NOW »

The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Release

Real Analysis with an Introduction to Wavelets and Applications

Author: Don Hong,Jianzhong Wang,Robert Gardner

Publisher: Elsevier

ISBN: 9780080540313

Category: Mathematics

Page: 392

View: 6602

DOWNLOAD NOW »

Real Analysis with an Introduction to Wavelets and Applications is an in-depth look at real analysis and its applications, including an introduction to wavelet analysis, a popular topic in "applied real analysis". This text makes a very natural connection between the classic pure analysis and the applied topics, including measure theory, Lebesgue Integral, harmonic analysis and wavelet theory with many associated applications. The text is relatively elementary at the start, but the level of difficulty steadily increases The book contains many clear, detailed examples, case studies and exercises Many real world applications relating to measure theory and pure analysis Introduction to wavelet analysis
Release

Complex Analysis for Mathematics and Engineering

Author: John H. Mathews,Russell W. Howell

Publisher: Jones & Bartlett Learning

ISBN: 9780763714253

Category: Mathematics

Page: 596

View: 1535

DOWNLOAD NOW »

Complex Analysis for Mathematics and Engineering strikes a balance between the pure and applied aspects of complex analysis, and presents concepts using a clear writing style. Believing that mathemati
Release