Foams

Theory: Measurements: Applications

Author: Robert K. Prud'homme

Publisher: CRC Press

ISBN: 9780824793951

Category: Science

Page: 610

View: 1102

DOWNLOAD NOW »

This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.
Release

Surface and Interfacial Tension

Measurement, Theory, and Applications

Author: Stanley Hartland

Publisher: CRC Press

ISBN: 0824751361

Category: Science

Page: 1500

View: 8351

DOWNLOAD NOW »

This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and their significance to numerous applications. Assessing methods for the accurate measurement of surface tension, interfacial tension, and contact angles, Surface and Interfacial Tension presents modern simulations of complex interfacial motions, such as bubble motion in liquids, and authoritatively illuminates bubble nucleation and detachment.
Release

Nanoscience

Colloidal and Interfacial Aspects

Author: Victor M. Starov

Publisher: CRC Press

ISBN: 1420065017

Category: Science

Page: 1256

View: 480

DOWNLOAD NOW »

The common perception is that nanoscience is something entirely new, that it sprung forth whole and fully formed like some mythological deity. But the truth is that like all things scientific, nanoscience is the natural result of the long evolution of scientific inquiry. Following a historical trail back to the middle of the 19th century, nanoscience is the inborn property of colloid and interface science. What’s important today is for us to recognize that nanoparticles are small colloidal objects. It should also be appreciated that over the past decades, a number of novel nanostructures have been developed, but whatever we call them, we cannot forget that their properties and behavior are still in the realm of colloid and interface science. However one views it, the interest and funding in nano-science is a tremendous opportunity to advance critical research in colloid chemistry. Nanoscience: Colloidal and Interfacial Aspects brings together a prominent roster of 42 leading investigators and their teams, who detail the wide range of theoretical and experimental knowledge that can be successfully applied for investigating nanosystems, many of which are actually well-known colloidal systems. This international grouping of pioneering investigators from academia and industry use these pages to provide researchers of today and tomorrow with a full examination of nano-disperse colloids, homogeneous and heterogeneous nano-structured materials (and their properties), and shelf-organization at the nano-scale. This cutting-edge reference provides information on investigations into non-linear electrokinetic phenomena in nano-sized dispersions and nano-sized biological systems. It discusses application aspects of technological processes in great detail, providing scientists and engineers across all fields with authoritative commentary on colloid and interface science operating at the nanoscale. Nano-Science: Colloidal and Interfacial Aspects provides an authoritative resource for those wanting to familiarize themselves with current progress as well as for those looking to make their own impact on the development of new technologies and practical applications in fields as diverse as medicine, materials, and environmental science to name but a few. Whether you call the technology nano or colloids, the field continues to be ripe with opportunity.
Release

The Science of Defoaming

Theory, Experiment and Applications

Author: Peter R. Garrett

Publisher: CRC Press

ISBN: 1420060414

Category: Science

Page: 598

View: 8372

DOWNLOAD NOW »

In the 20 years since the publication of the author’s multi-contributor volume on defoaming, a vast amount of new work has been published and many new insights have been revealed. A cohesive, single-authored book, The Science of Defoaming: Theory, Experiment and Applications provides comprehensive coverage of the topic. It describes the mode of action of antifoams, presenting the relevant theory and the supporting experimental evidence. Beginning with an introductory chapter that discusses the intrinsic properties of foam, the book then describes experimental methods for measuring foam properties important for studying antifoam action and techniques used in establishing the mode of action of antifoams. Since most commercially effective antifoams are oil based, a chapter is devoted to the entry and spreading behavior of oils and the role of thin film forces in determining that behavior. The book reviews the mode of action of antifoams, including theories of antifoam mechanisms and the role of bridging foam films by particles and oil drops. It also addresses issues related to the effect of antifoam concentration on foam formation by air entrainment and the process of deactivation of mixed oil–particle antifoams during dispersal and foam generation. For applications where chemical antifoam use is unacceptable, the text examines mechanical means of defoaming, such as the use of rotary devices and ultrasound. The final chapters consider the application of defoaming in radically different contexts including waterborne latex paints and varnishes, machine washing of textiles, gas–oil separation in crude oil production, and cardiopulmonary bypass surgery. Focusing on the basic science of defoaming, this book presents a balanced view, which also addresses the challenges that may arise for these specific defoaming applications.
Release

Handbook of Detergents, Part E

Applications

Author: Uri Zoller

Publisher: CRC Press

ISBN: 1574447572

Category: Science

Page: 504

View: 9921

DOWNLOAD NOW »

An Examination of Detergent Applications The fifth volume in a six volume project penned by detergent industry experts, this segment deals with the various applications of detergent formulations – surfactants, builders, sequestering/chelating agents – as well as other components. These applications are discussed with respect to the scope of their domestic, institutional, or industrial usages. Special focus is given to technological advancement, health and environmental concerns, and the rapid changes occurring in the field within the past several years. With each chapter providing the special access of a pioneering researcher, this text offers an insider’s look at the most current advances.
Release

Dispersions

Characterization, Testing, and Measurement

Author: Erik Kissa

Publisher: CRC Press

ISBN: 9780824719944

Category: Science

Page: 708

View: 7073

DOWNLOAD NOW »

Explaining principles essential for the interpretation of data and understanding the real meaning of the result, this work describes carious methods and techniques used to characterize dispersions and measure their physical and chemical properties. It describes a variety of dispersions containing particles ranging from submicron sizes to aggregates and from hard particles to polymer latices.
Release

Physical Review

Statistical physics, plasmas, fluids, and related interdisciplinary topics

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Statistical physics

Page: N.A

View: 2689

DOWNLOAD NOW »

Release

Emulsions and Emulsion Stability

Surfactant Science Series/61

Author: Johan Sjoblom

Publisher: CRC Press

ISBN: 1420028081

Category: Science

Page: 688

View: 1637

DOWNLOAD NOW »

Emulsions and Emulsion Stability, Second Edition provides comprehensive coverage of both theoretical and practical aspects of emulsions. The book presents fundamental concepts and processes in emulsified systems, such as flocculation, coalescence, stability, precipitation, deposition, and the evolution of droplet size distribution. The book explains how to predict emulsion stability and determine droplet sizes in a variety of emulsion systems. It discusses spontaneous emulsification and the formation of “nanoemulsions” as well as droplet-droplet interactions in different electrical fields (electrocoalescence), and the formulation, composition, and preparation variables that contribute to the inversion in emulsion systems. Several chapters emphasize applications such as emulsification encountered in oil spills, asphalt, chemical flooding, acid crude oils, and large-scale industrial wastewater treatment. The survey of experimental characterization methods highlights the importance of thin liquid films in colloidal systems and assesses different NMR applications, ultrasound characterization, video microscopy, and other on-line instrumentation. The last chapter in the book deals with obtaining conductivity measurements as an alternative to online instrumentation. Completely revised and expanded, this second edition of Emulsions and Emulsion Stability offers a well-rounded collection of knowledge that is applicable to all academic and industrial scientists and researchers in the fields of surfactant and emulsion science.
Release

Foam Engineering

Fundamentals and Applications

Author: Paul Stevenson

Publisher: John Wiley & Sons

ISBN: 1119961092

Category: Technology & Engineering

Page: 548

View: 2030

DOWNLOAD NOW »

Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams. Key features: Foam fractionation is an exciting and emerging technology, starting to gain significant attention Discusses a vital topic for many industries, especially mineral processing, petroleum engineering, bioengineering, consumer products and food sector Links foam science theory to industrial applications, making it accessible to an engineering science audience Summarizes the latest developments in this rapidly progressing area of research Contains contributions from leading international researchers from academia and industry
Release