Feedback Systems

Input-Output Properties

Author: Charles A. Desoer,M. Vidyasagar

Publisher: SIAM

ISBN: 0898716705

Category: Mathematics

Page: 264

View: 4485

DOWNLOAD NOW »

A comprehensive treatment of the behavior of linear or nonlinear systems when they are connected in a closed-loop fashion.
Release

Symmetries and Semi-invariants in the Analysis of Nonlinear Systems

Author: Laura Menini,Antonio Tornambè

Publisher: Springer Science & Business Media

ISBN: 9780857296122

Category: Technology & Engineering

Page: 340

View: 1470

DOWNLOAD NOW »

This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion. The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design.
Release

Plug-and-Play Monitoring and Performance Optimization for Industrial Automation Processes

Author: Hao Luo

Publisher: Springer

ISBN: 3658159286

Category: Technology & Engineering

Page: 149

View: 5654

DOWNLOAD NOW »

Dr.-Ing. Hao Luo demonstrates the developments of advanced plug-and-play (PnP) process monitoring and control systems for industrial automation processes. With aid of the so-called Youla parameterization, a novel PnP process monitoring and control architecture (PnP-PMCA) with modularized components is proposed. To validate the developments, a case study on an industrial rolling mill benchmark is performed, and the real-time implementation on a laboratory brushless DC motor is presented.
Release

Non-identifier Based Adaptive Control in Mechatronics

Theory and Application

Author: Christoph M. Hackl

Publisher: Springer

ISBN: 3319550365

Category: Technology & Engineering

Page: 652

View: 7798

DOWNLOAD NOW »

This book introduces non-identifier-based adaptive control (with and without internal model) and its application to the current, speed and position control of mechatronic systems such as electrical synchronous machines, wind turbine systems, industrial servo systems, and rigid-link, revolute-joint robots. In mechatronics, there is often only rough knowledge of the system. Due to parameter uncertainties, nonlinearities and unknown disturbances, model-based control strategies can reach their performance or stability limits without iterative controller design and performance evaluation, or system identification and parameter estimation. The non-identifier-based adaptive control presented is an alternative that neither identifies the system nor estimates its parameters but ensures stability. The adaptive controllers are easy to implement, compensate for disturbances and are inherently robust to parameter uncertainties and nonlinearities. For controller implementation only structural system knowledge (like relative degree, input-to-state stable zero dynamics and known sign of the high-frequency gain) is required. Moreover, the presented controllers guarantee reference tracking with prescribed asymptotic or transient accuracy, i.e. the tracking error eventually tends to or for all time evolves within an a priori specified region. The book presents the theory, modeling and application in a general but detailed and self-contained manner, making it easy to read and understand, particularly for newcomers to the topics covered
Release