## Elliptic Curves, Modular Forms, and Their L-functions

Author: Alvaro Lozano-Robledo

Publisher: American Mathematical Soc.

ISBN: 0821852426

Category: Mathematics

Page: 195

View: 3388

Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.
Release

## 100 Years of Math Milestones: The Pi Mu Epsilon Centennial Collection

Author: Stephan Ramon Garcia,Steven J. Miller

Publisher: American Mathematical Soc.

ISBN: 1470436523

Category: Mathematics

Page: 581

View: 7161

This book is an outgrowth of a collection of 100 problems chosen to celebrate the 100th anniversary of the undergraduate math honor society Pi Mu Epsilon. Each chapter describes a problem or event, the progress made, and connections to entries from other years or other parts of mathematics. In places, some knowledge of analysis or algebra, number theory or probability will be helpful. Put together, these problems will be appealing and accessible to energetic and enthusiastic math majors and aficionados of all stripes. Stephan Ramon Garcia is WM Keck Distinguished Service Professor and professor of mathematics at Pomona College. He is the author of four books and over eighty research articles in operator theory, complex analysis, matrix analysis, number theory, discrete geometry, and other fields. He has coauthored dozens of articles with students, including one that appeared in The Best Writing on Mathematics: 2015. He is on the editorial boards of Notices of the AMS, Proceedings of the AMS, American Mathematical Monthly, Involve, and Annals of Functional Analysis. He received four NSF research grants as principal investigator and five teaching awards from three different institutions. He is a fellow of the American Mathematical Society and was the inaugural recipient of the Society's Dolciani Prize for Excellence in Research. Steven J. Miller is professor of mathematics at Williams College and a visiting assistant professor at Carnegie Mellon University. He has published five books and over one hundred research papers, most with students, in accounting, computer science, economics, geophysics, marketing, mathematics, operations research, physics, sabermetrics, and statistics. He has served on numerous editorial boards, including the Journal of Number Theory, Notices of the AMS, and the Pi Mu Epsilon Journal. He is active in enrichment and supplemental curricular initiatives for elementary and secondary mathematics, from the Teachers as Scholars Program and VCTAL (Value of Computational Thinking Across Grade Levels), to numerous math camps (the Eureka Program, HCSSiM, the Mathematics League International Summer Program, PROMYS, and the Ross Program). He is a fellow of the American Mathematical Society, an at-large senator for Phi Beta Kappa, and a member of the Mount Greylock Regional School Committee, where he sees firsthand the challenges of applying mathematics.
Release

## Number Theory and Geometry: An Introduction to Arithmetic Geometry

Author: Álvaro Lozano-Robledo

Publisher: American Mathematical Soc.

ISBN: 147045016X

Category: Arithmetical algebraic geometry

Page: 488

View: 6216

Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
Release

## Probability on Compact Lie Groups

Author: David Applebaum

Publisher: Springer

ISBN: 3319078429

Category: Mathematics

Page: 217

View: 6926

Probability theory on compact Lie groups deals with the interaction between “chance” and “symmetry,” a beautiful area of mathematics of great interest in its own sake but which is now also finding increasing applications in statistics and engineering (particularly with respect to signal processing). The author gives a comprehensive introduction to some of the principle areas of study, with an emphasis on applicability. The most important topics presented are: the study of measures via the non-commutative Fourier transform, existence and regularity of densities, properties of random walks and convolution semigroups of measures and the statistical problem of deconvolution. The emphasis on compact (rather than general) Lie groups helps readers to get acquainted with what is widely seen as a difficult field but which is also justified by the wealth of interesting results at this level and the importance of these groups for applications. The book is primarily aimed at researchers working in probability, stochastic analysis and harmonic analysis on groups. It will also be of interest to mathematicians working in Lie theory and physicists, statisticians and engineers who are working on related applications. A background in first year graduate level measure theoretic probability and functional analysis is essential; a background in Lie groups and representation theory is certainly helpful but the first two chapters also offer orientation in these subjects.
Release

## Introduction to Elliptic Curves and Modular Forms

Author: Neal Koblitz,Neal I. Koblitz

Publisher: Springer Science & Business Media

ISBN: 9780387979663

Category: Mathematics

Page: 248

View: 4019

This textbook covers the basic properties of elliptic curves and modular forms, with emphasis on certain connections with number theory. The ancient "congruent number problem" is the central motivating example for most of the book. My purpose is to make the subject accessible to those who find it hard to read more advanced or more algebraically oriented treatments. At the same time I want to introduce topics which are at the forefront of current research. Down-to-earth examples are given in the text and exercises, with the aim of making the material readable and interesting to mathematicians in fields far removed from the subject of the book. With numerous exercises (and answers) included, the textbook is also intended for graduate students who have completed the standard first-year courses in real and complex analysis and algebra. Such students would learn applications of techniques from those courses. thereby solidifying their under standing of some basic tools used throughout mathematics. Graduate stu dents wanting to work in number theory or algebraic geometry would get a motivational, example-oriented introduction. In addition, advanced under graduates could use the book for independent study projects, senior theses, and seminar work.
Release

## Modular Forms and Fermat’s Last Theorem

Author: Gary Cornell,Joseph H. Silverman,Glenn Stevens

Publisher: Springer Science & Business Media

ISBN: 1461219744

Category: Mathematics

Page: 582

View: 992

This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
Release

## Choice

Publication of the Association of College and Research Libraries, a Division of the American Library Association

Author: N.A

Publisher: N.A

ISBN: N.A

Page: N.A

View: 9017

Release

## Mathematical Constants II

Author: Steven R. Finch

Publisher: Cambridge University Press

ISBN: 1108470599

Category: Mathematics

Page: 824

View: 5180

Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.178 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson-Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl-Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton-Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Release

## The Theory of Partitions

Author: George E. Andrews

Publisher: Cambridge University Press

ISBN: 9780521637664

Category: Mathematics

Page: 255

View: 877

Discusses mathematics related to partitions of numbers into sums of positive integers.
Release

## Advances in the Theory of Numbers

Proceedings of the Thirteenth Conference of the Canadian Number Theory Association

Author: Ayşe Alaca,Şaban Alaca,Kenneth S. Williams

Publisher: Springer

ISBN: 9781493949915

Category: Mathematics

Page: 235

View: 7802