Differential Equations and Boundary Value Problems

Computing and Modeling

Author: Charles Henry Edwards,David E. Penney

Publisher: Prentice Hall

ISBN: 9780132061155

Category: Boundary value problems

Page: 804

View: 4377

DOWNLOAD NOW »

"This best-selling text by these well-known authors blends the traditional algebra problem solving skills with the conceptual development and geometric visualization of a modern differential equations course that is essential to science and engineering students."--Publisher.
Release

Differential Equations with Mathematica

Author: Martha L. L. Abell,James P. Braselton

Publisher: Academic Press

ISBN: 0128047771

Category: Mathematics

Page: 880

View: 8328

DOWNLOAD NOW »

Differential Equations with Mathematica, Fourth Edition is a supplementing reference which uses the fundamental concepts of the popular platform to solve (analytically, numerically, and/or graphically) differential equations of interest to students, instructors, and scientists. Mathematica’s diversity makes it particularly well suited to performing calculations encountered when solving many ordinary and partial differential equations. In some cases, Mathematica’s built-in functions can immediately solve a differential equation by providing an explicit, implicit, or numerical solution. In other cases, mathematica can be used to perform the calculations encountered when solving a differential equation. Because one goal of elementary differential equations courses is to introduce students to basic methods and algorithms so that they gain proficiency in them, nearly every topic covered this book introduces basic commands, also including typical examples of their application. A study of differential equations relies on concepts from calculus and linear algebra, so this text also includes discussions of relevant commands useful in those areas. In many cases, seeing a solution graphically is most meaningful, so the book relies heavily on Mathematica’s outstanding graphics capabilities. Demonstrates how to take advantage of the advanced features of Mathematica 10 Introduces the fundamental theory of ordinary and partial differential equations using Mathematica to solve typical problems of interest to students, instructors, scientists, and practitioners in many fields Showcases practical applications and case studies drawn from biology, physics, and engineering
Release

Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

Author: Jason J. Molitierno

Publisher: CRC Press

ISBN: 1439863393

Category: Computers

Page: 425

View: 8618

DOWNLOAD NOW »

On the surface, matrix theory and graph theory seem like very different branches of mathematics. However, adjacency, Laplacian, and incidence matrices are commonly used to represent graphs, and many properties of matrices can give us useful information about the structure of graphs. Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs is a compilation of many of the exciting results concerning Laplacian matrices developed since the mid 1970s by well-known mathematicians such as Fallat, Fiedler, Grone, Kirkland, Merris, Mohar, Neumann, Shader, Sunder, and more. The text is complemented by many examples and detailed calculations, and sections followed by exercises to aid the reader in gaining a deeper understanding of the material. Although some exercises are routine, others require a more in-depth analysis of the theorems and ask the reader to prove those that go beyond what was presented in the section. Matrix-graph theory is a fascinating subject that ties together two seemingly unrelated branches of mathematics. Because it makes use of both the combinatorial properties and the numerical properties of a matrix, this area of mathematics is fertile ground for research at the undergraduate, graduate, and professional levels. This book can serve as exploratory literature for the undergraduate student who is just learning how to do mathematical research, a useful "start-up" book for the graduate student beginning research in matrix-graph theory, and a convenient reference for the more experienced researcher.
Release

Differential Equations

A Primer for Scientists and Engineers

Author: Christian Constanda

Publisher: Springer

ISBN: 3319502247

Category: Mathematics

Page: 297

View: 6180

DOWNLOAD NOW »

This textbook is designed with the needs of today’s student in mind. It is the ideal textbook for a first course in elementary differential equations for future engineers and scientists, including mathematicians. This book is accessible to anyone who has a basic knowledge of precalculus algebra and differential and integral calculus. Its carefully crafted text adopts a concise, simple, no-frills approach to differential equations, which helps students acquire a solid experience in many classical solution techniques. With a lighter accent on the physical interpretation of the results, a more manageable page count than comparable texts, a highly readable style, and over 1000 exercises designed to be solved without a calculating device, this book emphasizes the understanding and practice of essential topics in a succinct yet fully rigorous fashion. Apart from several other enhancements, the second edition contains one new chapter on numerical methods of solution. The book formally splits the "pure" and "applied" parts of the contents by placing the discussion of selected mathematical models in separate chapters. At the end of most of the 246 worked examples, the author provides the commands in Mathematica® for verifying the results. The book can be used independently by the average student to learn the fundamentals of the subject, while those interested in pursuing more advanced material can regard it as an easily taken first step on the way to the next level. Additionally, practitioners who encounter differential equations in their professional work will find this text to be a convenient source of reference.
Release

Boundary Value Problems for Transport Equations

Author: Valeri Agoshkov

Publisher: Springer Science & Business Media

ISBN: 9780817639860

Category: Mathematics

Page: 278

View: 8241

DOWNLOAD NOW »

In the modern theory of boundary value problems the following ap proach to investigation is agreed upon (we call it the functional approach): some functional spaces are chosen; the statements of boundary value prob the basis of these spaces; and the solvability of lems are formulated on the problems, properties of solutions, and their dependence on the original data of the problems are analyzed. These stages are put on the basis of the correct statement of different problems of mathematical physics (or of the definition of ill-posed problems). For example, if the solvability of a prob lem in the functional spaces chosen cannot be established then, probably, the reason is in their unsatisfactory choice. Then the analysis should be repeated employing other functional spaces. Elliptical problems can serve as an example of classical problems which are analyzed by this approach. Their investigations brought a number of new notions and results in the theory of Sobolev spaces W;(D) which, in turn, enabled us to create a sufficiently complete theory of solvability of elliptical equations. Nowadays the mathematical theory of radiative transfer problems and kinetic equations is an extensive area of modern mathematical physics. It has various applications in astrophysics, the theory of nuclear reactors, geophysics, the theory of chemical processes, semiconductor theory, fluid mechanics, etc. [25,29,31,39,40, 47, 52, 78, 83, 94, 98, 120, 124, 125, 135, 146].
Release

Books in Print

Author: N.A

Publisher: N.A

ISBN: N.A

Category: American literature

Page: N.A

View: 395

DOWNLOAD NOW »

Books in print is the major source of information on books currently published and in print in the United States. The database provides the record of forthcoming books, books in-print, and books out-of-print.
Release

Time Dependent Problems and Difference Methods

Author: Bertil Gustafsson,Heinz-Otto Kreiss,Joseph Oliger

Publisher: John Wiley & Sons

ISBN: 9780471507345

Category: Mathematics

Page: 642

View: 9263

DOWNLOAD NOW »

Time dependent problems frequently pose challenges in areas of science and engineering dealing with numerical analysis, scientific computation, mathematical models, and most importantly—numerical experiments intended to analyze physical behavior and test design. Time Dependent Problems and Difference Methods addresses these various industrial considerations in a pragmatic and detailed manner, giving special attention to time dependent problems in its coverage of the derivation and analysis of numerical methods for computational approximations to Partial Differential Equations (PDEs). The book is written in two parts. Part I discusses problems with periodic solutions; Part II proceeds to discuss initial boundary value problems for partial differential equations and numerical methods for them. The problems with periodic solutions have been chosen because they allow the application of Fourier analysis without the complication that arises from the infinite domain for the corresponding Cauchy problem. Furthermore, the analysis of periodic problems provides necessary conditions when constructing methods for initial boundary value problems. Much of the material included in Part II appears for the first time in this book. The authors draw on their own interests and combined extensive experience in applied mathematics and computer science to bring about this practical and useful guide. They provide complete discussions of the pertinent theorems and back them up with examples and illustrations. For physical scientists, engineers, or anyone who uses numerical experiments to test designs or to predict and investigate physical phenomena, this invaluable guide is destined to become a constant companion. Time Dependent Problems and Difference Methods analysts, mathematical modelers, and graduate students of applied mathematics and scientific computations.
Release