Differential Dynamical Systems

Author: James D. Meiss

Publisher: SIAM

ISBN: 0898716357

Category: Mathematics

Page: 412

View: 993


Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics.Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems conceptsflow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems. Audience This textbook is intended for senior undergraduates and first-year graduate students in pure and applied mathematics, engineering, and the physical sciences. Readers should be comfortable with elementary differential equations and linear algebra and should have had exposure to advanced calculus. Contents List of Figures; Preface; Acknowledgments; Chapter 1: Introduction; Chapter 2: Linear Systems; Chapter 3: Existence and Uniqueness; Chapter 4: Dynamical Systems; Chapter 5: Invariant Manifolds; Chapter 6: The Phase Plane; Chapter 7: Chaotic Dynamics; Chapter 8: Bifurcation Theory; Chapter 9: Hamiltonian Dynamics; Appendix: Mathematical Software; Bibliography; Index

Methods of Mathematical Modelling

Fractional Differential Equations

Author: Harendra Singh,Devendra Kumar,Dumitru Baleanu

Publisher: CRC Press

ISBN: 1000596788

Category: Technology & Engineering

Page: 238

View: 3170


This book features original research articles on the topic of mathematical modelling and fractional differential equations. The contributions, written by leading researchers in the field, consist of chapters on classical and modern dynamical systems modelled by fractional differential equations in physics, engineering, signal processing, fluid mechanics, and bioengineering, manufacturing, systems engineering, and project management. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate level students, educators, researchers, and scientists interested in mathematical modelling and its diverse applications. Features Presents several recent developments in the theory and applications of fractional calculus Includes chapters on different analytical and numerical methods dedicated to several mathematical equations Develops methods for the mathematical models which are governed by fractional differential equations Provides methods for models in physics, engineering, signal processing, fluid mechanics, and bioengineering Discusses real-world problems, theory, and applications

Exact Finite-Difference Schemes

Author: Sergey Lemeshevsky,Piotr Matus,Dmitriy Poliakov

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110489724

Category: Mathematics

Page: 246

View: 782


Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport problems. After this, applications are discussed, such as the discretisation of ODEs and PDEs and numerical methods for stochastic differential equations. Contents: Basic notation Preliminary results Hyperbolic equations Parabolic equations Use of exact difference schemes to construct NSFD discretizations of differential equations Exact and truncated difference schemes for boundary-value problem Exact difference schemes for stochastic differential equations Numerical blow-up time Bibliography

A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics

Theory and Applications

Author: Laécio Carvalho de Barros,Rodney Carlos Bassanezi,Weldon Alexander Lodwick

Publisher: Springer

ISBN: 3662533243

Category: Computers

Page: 299

View: 3130


This book provides an essential introduction to the field of dynamical models. Starting from classical theories such as set theory and probability, it allows readers to draw near to the fuzzy case. On one hand, the book equips readers with a fundamental understanding of the theoretical underpinnings of fuzzy sets and fuzzy dynamical systems. On the other, it demonstrates how these theories are used to solve modeling problems in biomathematics, and presents existing derivatives and integrals applied to the context of fuzzy functions. Each of the major topics is accompanied by examples, worked-out exercises, and exercises to be completed. Moreover, many applications to real problems are presented. The book has been developed on the basis of the authors’ lectures to university students and is accordingly primarily intended as a textbook for both upper-level undergraduates and graduates in applied mathematics, statistics, and engineering. It also offers a valuable resource for practitioners such as mathematical consultants and modelers, and for researchers alike, as it may provide both groups with new ideas and inspirations for projects in the fields of fuzzy logic and biomathematics.

Differential Equations and Dynamical Systems

2 USUZCAMP, Urgench, Uzbekistan, August 8–12, 2017

Author: Abdulla Azamov,Leonid Bunimovich,Akhtam Dzhalilov,Hong-Kun Zhang

Publisher: Springer

ISBN: 3030014762

Category: Mathematics

Page: 195

View: 1809


This book features papers presented during a special session on dynamical systems, mathematical physics, and partial differential equations. Research articles are devoted to broad complex systems and models such as qualitative theory of dynamical systems, theory of games, circle diffeomorphisms, piecewise smooth circle maps, nonlinear parabolic systems, quadtratic dynamical systems, billiards, and intermittent maps. Focusing on a variety of topics from dynamical properties to stochastic properties of dynamical systems, this volume includes discussion on discrete-numerical tracking, conjugation between two critical circle maps, invariance principles, and the central limit theorem. Applications to game theory and networks are also included. Graduate students and researchers interested in complex systems, differential equations, dynamical systems, functional analysis, and mathematical physics will find this book useful for their studies. The special session was part of the second USA-Uzbekistan Conference on Analysis and Mathematical Physics held on August 8-12, 2017 at Urgench State University (Uzbekistan). The conference encouraged communication and future collaboration among U.S. mathematicians and their counterparts in Uzbekistan and other countries. Main themes included algebra and functional analysis, dynamical systems, mathematical physics and partial differential equations, probability theory and mathematical statistics, and pluripotential theory. A number of significant, recently established results were disseminated at the conference’s scheduled plenary talks, while invited talks presented a broad spectrum of findings in several sessions. Based on a different session from the conference, Algebra, Complex Analysis, and Pluripotential Theory is also published in the Springer Proceedings in Mathematics & Statistics Series.

Modeling, Analysis And Control Of Dynamical Systems With Friction And Impacts

Author: Olejnik Pawel,Feckan Michal,Awrejcewicz Jan

Publisher: #N/A

ISBN: 9813225300

Category: Mathematics

Page: 276

View: 9235


This book is aimed primarily towards physicists and mechanical engineers specializing in modeling, analysis, and control of discontinuous systems with friction and impacts. It fills a gap in the existing literature by offering an original contribution to the field of discontinuous mechanical systems based on mathematical and numerical modeling as well as the control of such systems. Each chapter provides the reader with both the theoretical background and results of verified and useful computations, including solutions of the problems of modeling and application of friction laws in numerical computations, results from finding and analyzing impact solutions, the analysis and control of dynamical systems with discontinuities, etc. The contents offer a smooth correspondence between science and engineering and will allow the reader to discover new ideas. Also emphasized is the unity of diverse branches of physics and mathematics towards understanding complex piecewise-smooth dynamical systems. Mathematical models presented will be important in numerical experiments, experimental measurements, and optimization problems found in applied mechanics.

Mathematical Epidemiology

Author: Fred Brauer,Pauline van den Driessche,J. Wu

Publisher: Springer Science & Business Media

ISBN: 3540789103

Category: Medical

Page: 414

View: 3345


Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).

An Introduction to Undergraduate Research in Computational and Mathematical Biology

From Birdsongs to Viscosities

Author: Hannah Callender Highlander,Alex Capaldi,Carrie Diaz Eaton

Publisher: Springer Nature

ISBN: 303033645X

Category: Mathematics

Page: 469

View: 3234


Speaking directly to the growing importance of research experience in undergraduate mathematics programs, this volume offers suggestions for undergraduate-appropriate research projects in mathematical and computational biology for students and their faculty mentors. The aim of each chapter is twofold: for faculty, to alleviate the challenges of identifying accessible topics and advising students through the research process; for students, to provide sufficient background, additional references, and context to excite students in these areas and to enable them to successfully undertake these problems in their research. Some of the topics discussed include: • Oscillatory behaviors present in real-world applications, from seasonal outbreaks of childhood diseases to action potentials in neurons • Simulating bacterial growth, competition, and resistance with agent-based models and laboratory experiments • Network structure and the dynamics of biological systems • Using neural networks to identify bird species from birdsong samples • Modeling fluid flow induced by the motion of pulmonary cilia Aimed at undergraduate mathematics faculty and advanced undergraduate students, this unique guide will be a valuable resource for generating fruitful research collaborations between students and faculty.