Deep Learning with Hadoop

Author: Dipayan Dev

Publisher: Packt Publishing Ltd

ISBN: 1787121232

Category: Computers

Page: 206

View: 1269

Build, implement and scale distributed deep learning models for large-scale datasets About This Book Get to grips with the deep learning concepts and set up Hadoop to put them to use Implement and parallelize deep learning models on Hadoop's YARN framework A comprehensive tutorial to distributed deep learning with Hadoop Who This Book Is For If you are a data scientist who wants to learn how to perform deep learning on Hadoop, this is the book for you. Knowledge of the basic machine learning concepts and some understanding of Hadoop is required to make the best use of this book. What You Will Learn Explore Deep Learning and various models associated with it Understand the challenges of implementing distributed deep learning with Hadoop and how to overcome it Implement Convolutional Neural Network (CNN) with deeplearning4j Delve into the implementation of Restricted Boltzmann Machines (RBM) Understand the mathematical explanation for implementing Recurrent Neural Networks (RNN) Get hands on practice of deep learning and their implementation with Hadoop. In Detail This book will teach you how to deploy large-scale dataset in deep neural networks with Hadoop for optimal performance. Starting with understanding what deep learning is, and what the various models associated with deep neural networks are, this book will then show you how to set up the Hadoop environment for deep learning. In this book, you will also learn how to overcome the challenges that you face while implementing distributed deep learning with large-scale unstructured datasets. The book will also show you how you can implement and parallelize the widely used deep learning models such as Deep Belief Networks, Convolutional Neural Networks, Recurrent Neural Networks, Restricted Boltzmann Machines and autoencoder using the popular deep learning library deeplearning4j. Get in-depth mathematical explanations and visual representations to help you understand the design and implementations of Recurrent Neural network and Denoising AutoEncoders with deeplearning4j. To give you a more practical perspective, the book will also teach you the implementation of large-scale video processing, image processing and natural language processing on Hadoop. By the end of this book, you will know how to deploy various deep neural networks in distributed systems using Hadoop. Style and approach This book takes a comprehensive, step-by-step approach to implement efficient deep learning models on Hadoop. It starts from the basics and builds the readers' knowledge as they strengthen their understanding of the concepts. Practical examples are included in every step of the way to supplement the theory.
Release

Large Scale Machine Learning with Python

Author: Bastiaan Sjardin,Luca Massaron,Alberto Boschetti

Publisher: Packt Publishing Ltd

ISBN: 1785888021

Category: Computers

Page: 420

View: 9247

Learn to build powerful machine learning models quickly and deploy large-scale predictive applications About This Book Design, engineer and deploy scalable machine learning solutions with the power of Python Take command of Hadoop and Spark with Python for effective machine learning on a map reduce framework Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful. What You Will Learn Apply the most scalable machine learning algorithms Work with modern state-of-the-art large-scale machine learning techniques Increase predictive accuracy with deep learning and scalable data-handling techniques Improve your work by combining the MapReduce framework with Spark Build powerful ensembles at scale Use data streams to train linear and non-linear predictive models from extremely large datasets using a single machine In Detail Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. Style and Approach This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly. Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production. This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.
Release

Practical Data Science with Hadoop and Spark

Designing and Building Effective Analytics at Scale

Author: Ofer Mendelevitch,Casey Stella,Douglas Eadline

Publisher: Addison-Wesley Professional

ISBN: 0134029720

Category: Computers

Page: 256

View: 4235

The Complete Guide to Data Science with Hadoop—For Technical Professionals, Businesspeople, and Students Demand is soaring for professionals who can solve real data science problems with Hadoop and Spark. Practical Data Science with Hadoop® and Spark is your complete guide to doing just that. Drawing on immense experience with Hadoop and big data, three leading experts bring together everything you need: high-level concepts, deep-dive techniques, real-world use cases, practical applications, and hands-on tutorials. The authors introduce the essentials of data science and the modern Hadoop ecosystem, explaining how Hadoop and Spark have evolved into an effective platform for solving data science problems at scale. In addition to comprehensive application coverage, the authors also provide useful guidance on the important steps of data ingestion, data munging, and visualization. Once the groundwork is in place, the authors focus on specific applications, including machine learning, predictive modeling for sentiment analysis, clustering for document analysis, anomaly detection, and natural language processing (NLP). This guide provides a strong technical foundation for those who want to do practical data science, and also presents business-driven guidance on how to apply Hadoop and Spark to optimize ROI of data science initiatives. Learn What data science is, how it has evolved, and how to plan a data science career How data volume, variety, and velocity shape data science use cases Hadoop and its ecosystem, including HDFS, MapReduce, YARN, and Spark Data importation with Hive and Spark Data quality, preprocessing, preparation, and modeling Visualization: surfacing insights from huge data sets Machine learning: classification, regression, clustering, and anomaly detection Algorithms and Hadoop tools for predictive modeling Cluster analysis and similarity functions Large-scale anomaly detection NLP: applying data science to human language
Release

Practical Machine Learning

Author: Sunila Gollapudi

Publisher: Packt Publishing Ltd

ISBN: 1784394017

Category: Computers

Page: 468

View: 6741

Tackle the real-world complexities of modern machine learning with innovative, cutting-edge, techniques About This Book Fully-coded working examples using a wide range of machine learning libraries and tools, including Python, R, Julia, and Spark Comprehensive practical solutions taking you into the future of machine learning Go a step further and integrate your machine learning projects with Hadoop Who This Book Is For This book has been created for data scientists who want to see machine learning in action and explore its real-world application. With guidance on everything from the fundamentals of machine learning and predictive analytics to the latest innovations set to lead the big data revolution into the future, this is an unmissable resource for anyone dedicated to tackling current big data challenges. Knowledge of programming (Python and R) and mathematics is advisable if you want to get started immediately. What You Will Learn Implement a wide range of algorithms and techniques for tackling complex data Get to grips with some of the most powerful languages in data science, including R, Python, and Julia Harness the capabilities of Spark and Hadoop to manage and process data successfully Apply the appropriate machine learning technique to address real-world problems Get acquainted with Deep learning and find out how neural networks are being used at the cutting-edge of machine learning Explore the future of machine learning and dive deeper into polyglot persistence, semantic data, and more In Detail Finding meaning in increasingly larger and more complex datasets is a growing demand of the modern world. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. Machine learning uses complex algorithms to make improved predictions of outcomes based on historical patterns and the behaviour of data sets. Machine learning can deliver dynamic insights into trends, patterns, and relationships within data, immensely valuable to business growth and development. This book explores an extensive range of machine learning techniques uncovering hidden tricks and tips for several types of data using practical and real-world examples. While machine learning can be highly theoretical, this book offers a refreshing hands-on approach without losing sight of the underlying principles. Inside, a full exploration of the various algorithms gives you high-quality guidance so you can begin to see just how effective machine learning is at tackling contemporary challenges of big data. This is the only book you need to implement a whole suite of open source tools, frameworks, and languages in machine learning. We will cover the leading data science languages, Python and R, and the underrated but powerful Julia, as well as a range of other big data platforms including Spark, Hadoop, and Mahout. Practical Machine Learning is an essential resource for the modern data scientists who want to get to grips with its real-world application. With this book, you will not only learn the fundamentals of machine learning but dive deep into the complexities of real world data before moving on to using Hadoop and its wider ecosystem of tools to process and manage your structured and unstructured data. You will explore different machine learning techniques for both supervised and unsupervised learning; from decision trees to Naive Bayes classifiers and linear and clustering methods, you will learn strategies for a truly advanced approach to the statistical analysis of data. The book also explores the cutting-edge advancements in machine learning, with worked examples and guidance on deep learning and reinforcement learning, providing you with practical demonstrations and samples that help take the theory–and mystery–out of even the most advanced machine learning methodologies. Style and approach A practical data science tutorial designed to give you an insight into the practical application of machine learning, this book takes you through complex concepts and tasks in an accessible way. Featuring information on a wide range of data science techniques, Practical Machine Learning is a comprehensive data science resource.
Release

Deep Learning

A Practitioner's Approach

Author: Josh Patterson,Adam Gibson

Publisher: "O'Reilly Media, Inc."

ISBN: 1491914238

Category: Computers

Page: 532

View: 932

How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.
Release

Deep Learning with TensorFlow

Author: Giancarlo Zaccone,Md. Rezaul Karim,Ahmed Menshawy

Publisher: Packt Publishing Ltd

ISBN: 1786460122

Category: Computers

Page: 320

View: 8563

Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of this comprehensive TensorFlow guide About This Book Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide Real-world contextualization through some deep learning problems concerning research and application Who This Book Is For The book is intended for a general audience of people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus. What You Will Learn Learn about machine learning landscapes along with the historical development and progress of deep learning Learn about deep machine intelligence and GPU computing with the latest TensorFlow 1.x Access public datasets and utilize them using TensorFlow to load, process, and transform data Use TensorFlow on real-world datasets, including images, text, and more Learn how to evaluate the performance of your deep learning models Using deep learning for scalable object detection and mobile computing Train machines quickly to learn from data by exploring reinforcement learning techniques Explore active areas of deep learning research and applications In Detail Deep learning is the step that comes after machine learning, and has more advanced implementations. Machine learning is not just for academics anymore, but is becoming a mainstream practice through wide adoption, and deep learning has taken the front seat. As a data scientist, if you want to explore data abstraction layers, this book will be your guide. This book shows how this can be exploited in the real world with complex raw data using TensorFlow 1.x. Throughout the book, you'll learn how to implement deep learning algorithms for machine learning systems and integrate them into your product offerings, including search, image recognition, and language processing. Additionally, you'll learn how to analyze and improve the performance of deep learning models. This can be done by comparing algorithms against benchmarks, along with machine intelligence, to learn from the information and determine ideal behaviors within a specific context. After finishing the book, you will be familiar with machine learning techniques, in particular the use of TensorFlow for deep learning, and will be ready to apply your knowledge to research or commercial projects. Style and approach This step-by-step guide will explore common, and not so common, deep neural networks and show how these can be exploited in the real world with complex raw data. With the help of practical examples, you will learn how to implement different types of neural nets to build smart applications related to text, speech, and image data processing.
Release

Machine Learning with Spark

Author: Nick Pentreath

Publisher: Packt Publishing Ltd

ISBN: 1783288523

Category: Computers

Page: 338

View: 745

If you are a Scala, Java, or Python developer with an interest in machine learning and data analysis and are eager to learn how to apply common machine learning techniques at scale using the Spark framework, this is the book for you. While it may be useful to have a basic understanding of Spark, no previous experience is required.
Release

Deep Learning: Practical Neural Networks with Java

Author: Yusuke Sugomori,Bostjan Kaluza,Fabio M. Soares,Alan M. F. Souza

Publisher: Packt Publishing Ltd

ISBN: 1788471717

Category: Computers

Page: 744

View: 4783

Build and run intelligent applications by leveraging key Java machine learning libraries About This Book Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries. Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. What You Will Learn Get a practical deep dive into machine learning and deep learning algorithms Explore neural networks using some of the most popular Deep Learning frameworks Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms Apply machine learning to fraud, anomaly, and outlier detection Experiment with deep learning concepts, algorithms, and the toolbox for deep learning Select and split data sets into training, test, and validation, and explore validation strategies Apply the code generated in practical examples, including weather forecasting and pattern recognition In Detail Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work. The course provides you with highly practical content explaining deep learning with Java, from the following Packt books: Java Deep Learning Essentials Machine Learning in Java Neural Network Programming with Java, Second Edition Style and approach This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application
Release

Neural Networks with R

Smart models using CNN, RNN, deep learning, and artificial intelligence principles

Author: Giuseppe Ciaburro,Balaji Venkateswaran

Publisher: Packt Publishing Ltd

ISBN: 1788399412

Category: Computers

Page: 270

View: 8941

Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.
Release

Machine Learning with Apache Spark Quick Start Guide

Uncover patterns, derive actionable insights, and learn from big data using MLlib

Author: Jillur Quddus

Publisher: Packt Publishing Ltd

ISBN: 1789349370

Category: Computers

Page: 240

View: 760

Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key Features Make a hands-on start in the fields of Big Data, Distributed Technologies and Machine Learning Learn how to design, develop and interpret the results of common Machine Learning algorithms Uncover hidden patterns in your data in order to derive real actionable insights and business value Book Description Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently. But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it? The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data. What you will learn Understand how Spark fits in the context of the big data ecosystem Understand how to deploy and configure a local development environment using Apache Spark Understand how to design supervised and unsupervised learning models Build models to perform NLP, deep learning, and cognitive services using Spark ML libraries Design real-time machine learning pipelines in Apache Spark Become familiar with advanced techniques for processing a large volume of data by applying machine learning algorithms Who this book is for This book is aimed at Business Analysts, Data Analysts and Data Scientists who wish to make a hands-on start in order to take advantage of modern Big Data technologies combined with Advanced Analytics.
Release