Data Science Projects with Python

Data Science Projects with Python

A case study approach to successful data science projects using Python, pandas, and scikit-learn Stephen Klosterman. You may notice that we spent nearly all of this chapter identifying and correcting issues with our dataset.

Author: Stephen Klosterman

Publisher: Packt Publishing Ltd

ISBN: 9781838552602

Category: Computers

Page: 374

View: 525

Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key FeaturesTackle data science problems by identifying the problem to be solvedIllustrate patterns in data using appropriate visualizationsImplement suitable machine learning algorithms to gain insights from dataBook Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools, by applying them to realistic data problems. You will learn how to use pandas and Matplotlib to critically examine datasets with summary statistics and graphs, and extract the insights you seek to derive. You will build your knowledge as you prepare data using the scikit-learn package and feed it to machine learning algorithms such as regularized logistic regression and random forest. You’ll discover how to tune algorithms to provide the most accurate predictions on new and unseen data. As you progress, you’ll gain insights into the working and output of these algorithms, building your understanding of both the predictive capabilities of the models and why they make these predictions. By then end of this book, you will have the necessary skills to confidently use machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learnInstall the required packages to set up a data science coding environmentLoad data into a Jupyter notebook running PythonUse Matplotlib to create data visualizationsFit machine learning models using scikit-learnUse lasso and ridge regression to regularize your modelsCompare performance between models to find the best outcomesUse k-fold cross-validation to select model hyperparametersWho this book is for If you are a data analyst, data scientist, or business analyst who wants to get started using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of Python and data analytics will help you get the most from this book. Familiarity with mathematical concepts such as algebra and basic statistics will also be useful.
Categories: Computers

Data Science Projects with Python

Data Science Projects with Python

What You Will Learn: Load, explore, and process data using the pandas Python package Use Matplotlib to create compelling data visualizations Implement predictive machine learning models with scikit-learn Use lasso and ridge regression to ...

Author: Stephen Klosterman

Publisher:

ISBN: 1800564481

Category:

Page: 432

View: 873

Gain hands-on experience of Python programming with industry-standard machine learning techniques using pandas, scikit-learn, and XGBoost Key Features Think critically about data and use it to form and test a hypothesis Choose an appropriate machine learning model and train it on your data Communicate data-driven insights with confidence and clarity Book Description If data is the new oil, then machine learning is the drill. As companies gain access to ever-increasing quantities of raw data, the ability to deliver state-of-the-art predictive models that support business decision-making becomes more and more valuable. In this book, you'll work on an end-to-end project based around a realistic data set and split up into bite-sized practical exercises. This creates a case-study approach that simulates the working conditions you'll experience in real-world data science projects. You'll learn how to use key Python packages, including pandas, Matplotlib, and scikit-learn, and master the process of data exploration and data processing, before moving on to fitting, evaluating, and tuning algorithms such as regularized logistic regression and random forest. Now in its second edition, this book will take you through the end-to-end process of exploring data and delivering machine learning models. Updated for 2021, this edition includes brand new content on XGBoost, SHAP values, algorithmic fairness, and the ethical concerns of deploying a model in the real world. By the end of this data science book, you'll have the skills, understanding, and confidence to build your own machine learning models and gain insights from real data. What you will learn Load, explore, and process data using the pandas Python package Use Matplotlib to create compelling data visualizations Implement predictive machine learning models with scikit-learn Use lasso and ridge regression to reduce model overfitting Evaluate random forest and logistic regression model performance Deliver business insights by presenting clear, convincing conclusions Who this book is for Data Science Projects with Python - Second Edition is for anyone who wants to get started with data science and machine learning. If you're keen to advance your career by using data analysis and predictive modeling to generate business insights, then this book is the perfect place to begin. To quickly grasp the concepts covered, it is recommended that you have basic experience of programming with Python or another similar language, and a general interest in statistics.
Categories:

Practical Data Science with Python

Practical Data Science with Python

What you will learnUse Python data science packages effectivelyClean and prepare data for data science work, including feature engineering and feature selectionData modeling, including classic statistical models (such as t-tests), and ...

Author: Nathan George

Publisher: Packt Publishing Ltd

ISBN: 9781801076654

Category: Computers

Page: 620

View: 938

Learn to effectively manage data and execute data science projects from start to finish using Python Key FeaturesUnderstand and utilize data science tools in Python, such as specialized machine learning algorithms and statistical modelingBuild a strong data science foundation with the best data science tools available in PythonAdd value to yourself, your organization, and society by extracting actionable insights from raw dataBook Description Practical Data Science with Python teaches you core data science concepts, with real-world and realistic examples, and strengthens your grip on the basic as well as advanced principles of data preparation and storage, statistics, probability theory, machine learning, and Python programming, helping you build a solid foundation to gain proficiency in data science. The book starts with an overview of basic Python skills and then introduces foundational data science techniques, followed by a thorough explanation of the Python code needed to execute the techniques. You'll understand the code by working through the examples. The code has been broken down into small chunks (a few lines or a function at a time) to enable thorough discussion. As you progress, you will learn how to perform data analysis while exploring the functionalities of key data science Python packages, including pandas, SciPy, and scikit-learn. Finally, the book covers ethics and privacy concerns in data science and suggests resources for improving data science skills, as well as ways to stay up to date on new data science developments. By the end of the book, you should be able to comfortably use Python for basic data science projects and should have the skills to execute the data science process on any data source. What you will learnUse Python data science packages effectivelyClean and prepare data for data science work, including feature engineering and feature selectionData modeling, including classic statistical models (such as t-tests), and essential machine learning algorithms, such as random forests and boosted modelsEvaluate model performanceCompare and understand different machine learning methodsInteract with Excel spreadsheets through PythonCreate automated data science reports through PythonGet to grips with text analytics techniquesWho this book is for The book is intended for beginners, including students starting or about to start a data science, analytics, or related program (e.g. Bachelor’s, Master’s, bootcamp, online courses), recent college graduates who want to learn new skills to set them apart in the job market, professionals who want to learn hands-on data science techniques in Python, and those who want to shift their career to data science. The book requires basic familiarity with Python. A "getting started with Python" section has been included to get complete novices up to speed.
Categories: Computers

Learn Python by Building Data Science Applications

Learn Python by Building Data Science Applications

A fun, project-based guide to learning Python 3 while building real-world apps Philipp Kats, David Katz ... Data Science Projects with Python (https://www.packtpub.com/big-data-andbusiness-intelligence/data-science-projects-python) The ...

Author: Philipp Kats

Publisher: Packt Publishing Ltd

ISBN: 9781789533064

Category: Computers

Page: 482

View: 509

Understand the constructs of the Python programming language and use them to build data science projects Key Features Learn the basics of developing applications with Python and deploy your first data application Take your first steps in Python programming by understanding and using data structures, variables, and loops Delve into Jupyter, NumPy, Pandas, SciPy, and sklearn to explore the data science ecosystem in Python Book Description Python is the most widely used programming language for building data science applications. Complete with step-by-step instructions, this book contains easy-to-follow tutorials to help you learn Python and develop real-world data science projects. The “secret sauce” of the book is its curated list of topics and solutions, put together using a range of real-world projects, covering initial data collection, data analysis, and production. This Python book starts by taking you through the basics of programming, right from variables and data types to classes and functions. You’ll learn how to write idiomatic code and test and debug it, and discover how you can create packages or use the range of built-in ones. You’ll also be introduced to the extensive ecosystem of Python data science packages, including NumPy, Pandas, scikit-learn, Altair, and Datashader. Furthermore, you’ll be able to perform data analysis, train models, and interpret and communicate the results. Finally, you’ll get to grips with structuring and scheduling scripts using Luigi and sharing your machine learning models with the world as a microservice. By the end of the book, you’ll have learned not only how to implement Python in data science projects, but also how to maintain and design them to meet high programming standards. What you will learn Code in Python using Jupyter and VS Code Explore the basics of coding – loops, variables, functions, and classes Deploy continuous integration with Git, Bash, and DVC Get to grips with Pandas, NumPy, and scikit-learn Perform data visualization with Matplotlib, Altair, and Datashader Create a package out of your code using poetry and test it with PyTest Make your machine learning model accessible to anyone with the web API Who this book is for If you want to learn Python or data science in a fun and engaging way, this book is for you. You’ll also find this book useful if you’re a high school student, researcher, analyst, or anyone with little or no coding experience with an interest in the subject and courage to learn, fail, and learn from failing. A basic understanding of how computers work will be useful.
Categories: Computers

Data Science Bookcamp

Data Science Bookcamp

About the book Data Science Bookcamp doesn’t stop with surface-level theory and toy examples.

Author: Leonard Apeltsin

Publisher: Simon and Schuster

ISBN: 9781638352303

Category: Computers

Page: 704

View: 373

Learn data science with Python by building five real-world projects! Experiment with card game predictions, tracking disease outbreaks, and more, as you build a flexible and intuitive understanding of data science. In Data Science Bookcamp you will learn: - Techniques for computing and plotting probabilities - Statistical analysis using Scipy - How to organize datasets with clustering algorithms - How to visualize complex multi-variable datasets - How to train a decision tree machine learning algorithm In Data Science Bookcamp you’ll test and build your knowledge of Python with the kind of open-ended problems that professional data scientists work on every day. Downloadable data sets and thoroughly-explained solutions help you lock in what you’ve learned, building your confidence and making you ready for an exciting new data science career. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology A data science project has a lot of moving parts, and it takes practice and skill to get all the code, algorithms, datasets, formats, and visualizations working together harmoniously. This unique book guides you through five realistic projects, including tracking disease outbreaks from news headlines, analyzing social networks, and finding relevant patterns in ad click data. About the book Data Science Bookcamp doesn’t stop with surface-level theory and toy examples. As you work through each project, you’ll learn how to troubleshoot common problems like missing data, messy data, and algorithms that don’t quite fit the model you’re building. You’ll appreciate the detailed setup instructions and the fully explained solutions that highlight common failure points. In the end, you’ll be confident in your skills because you can see the results. What's inside - Web scraping - Organize datasets with clustering algorithms - Visualize complex multi-variable datasets - Train a decision tree machine learning algorithm About the reader For readers who know the basics of Python. No prior data science or machine learning skills required. About the author Leonard Apeltsin is the Head of Data Science at Anomaly, where his team applies advanced analytics to uncover healthcare fraud, waste, and abuse. Table of Contents CASE STUDY 1 FINDING THE WINNING STRATEGY IN A CARD GAME 1 Computing probabilities using Python 2 Plotting probabilities using Matplotlib 3 Running random simulations in NumPy 4 Case study 1 solution CASE STUDY 2 ASSESSING ONLINE AD CLICKS FOR SIGNIFICANCE 5 Basic probability and statistical analysis using SciPy 6 Making predictions using the central limit theorem and SciPy 7 Statistical hypothesis testing 8 Analyzing tables using Pandas 9 Case study 2 solution CASE STUDY 3 TRACKING DISEASE OUTBREAKS USING NEWS HEADLINES 10 Clustering data into groups 11 Geographic location visualization and analysis 12 Case study 3 solution CASE STUDY 4 USING ONLINE JOB POSTINGS TO IMPROVE YOUR DATA SCIENCE RESUME 13 Measuring text similarities 14 Dimension reduction of matrix data 15 NLP analysis of large text datasets 16 Extracting text from web pages 17 Case study 4 solution CASE STUDY 5 PREDICTING FUTURE FRIENDSHIPS FROM SOCIAL NETWORK DATA 18 An introduction to graph theory and network analysis 19 Dynamic graph theory techniques for node ranking and social network analysis 20 Network-driven supervised machine learning 21 Training linear classifiers with logistic regression 22 Training nonlinear classifiers with decision tree techniques 23 Case study 5 solution
Categories: Computers

Data Science Crash Course for Beginners with Python Fundamentals and Practices with Python

Data Science Crash Course for Beginners with Python  Fundamentals and Practices with Python

How Is This Book Different? Every book by AI Publishing has been carefully crafted. This book lays equal emphasis on the theoretical sections as well as the practical aspects of data science.

Author: Ai Publishing

Publisher: AI Publishing LLC

ISBN: 1734790148

Category: Computers

Page: 310

View: 655

Data Science Crash Course for Beginners with Python Data Science is here to stay. The tremendous growth in the volume, velocity, and variety of data has a substantial impact on every aspect of a business. While data continues to grow exponentially, accuracy remains a problem. This is where data scientists play a decisive role. A data scientist analyzes data, discovers new insights, paints a picture, and creates a vision. And a competent data scientist will provide a business with the competitive edge it needs and address pressing business problems. Data Science Crash Course for Beginners with Python presents you with a hands-on approach to learn data science fast. How Is This Book Different? Every book by AI Publishing has been carefully crafted. This book lays equal emphasis on the theoretical sections as well as the practical aspects of data science. Each chapter provides the theoretical background behind the numerous data science techniques, and practical examples explain the working of these techniques. In the Further Reading section of each chapter, you will find the links to informative data science posts. This book presents you with the tools and packages you need to kick-start data science projects to resolve problems of practical nature. Special emphasis is laid on the main stages of a data science pipeline--data acquisition, data preparation, exploratory data analysis, data modeling and evaluation, and interpretation of the results. In the Data Science Resources section, links to data science resources, articles, interviews, and data science newsletters are provided. The author has also put together a list of contests and competitions that you can try on your own. Another added benefit of buying this book is you get instant access to all the learning material presented with this book-- PDFs, Python codes, exercises, and references--on the publisher's website. They will not cost you an extra cent. The datasets used in this book can be downloaded at runtime, or accessed via the Resources/Datasets folder. The author simplifies your learning by holding your hand through everything. The step by step description of the installation of the software you need for implementing the various data science techniques in this book is guaranteed to make your learning easier. So, right from the beginning, you can experiment with the practical aspects of data science. You'll also find the quick course on Python programming in the second and third chapters immensely helpful, especially if you are new to Python. This book gives you access to all the codes and datasets. So, access to a computer with the internet is sufficient to get started. The topics covered include: Introduction to Data Science and Decision Making Python Installation and Libraries for Data Science Review of Python for Data Science Data Acquisition Data Preparation (Preprocessing) Exploratory Data Analysis Data Modeling and Evaluation Using Machine Learning Interpretation and Reporting of Findings Data Science Projects Key Insights and Further Avenues Click the BUY button to start your Data Science journey.
Categories: Computers

Python for Data Science For Dummies

Python for Data Science For Dummies

See why Python works for data science tour the data science pipeline and learn about Python's basic capabilities Get set up install Python, download datasets and example code, and start working with numbers and logic, creating functions, ...

Author: John Paul Mueller

Publisher: John Wiley & Sons

ISBN: 9781118843987

Category: Computers

Page: 432

View: 403

Unleash the power of Python for your data analysis projects with For Dummies! Python is the preferred programming language for data scientists and combines the best features of Matlab, Mathematica, and R into libraries specific to data analysis and visualization. Python for Data Science For Dummies shows you how to take advantage of Python programming to acquire, organize, process, and analyze large amounts of information and use basic statistics concepts to identify trends and patterns. You’ll get familiar with the Python development environment, manipulate data, design compelling visualizations, and solve scientific computing challenges as you work your way through this user-friendly guide. Covers the fundamentals of Python data analysis programming and statistics to help you build a solid foundation in data science concepts like probability, random distributions, hypothesis testing, and regression models Explains objects, functions, modules, and libraries and their role in data analysis Walks you through some of the most widely-used libraries, including NumPy, SciPy, BeautifulSoup, Pandas, and MatPlobLib Whether you’re new to data analysis or just new to Python, Python for Data Science For Dummies is your practical guide to getting a grip on data overload and doing interesting things with the oodles of information you uncover.
Categories: Computers

Python Data Science Essentials

Python Data Science Essentials

If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science.

Author: Alberto Boschetti

Publisher: Packt Publishing Ltd

ISBN: 9781785287893

Category: Computers

Page: 258

View: 402

If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills.
Categories: Computers

Python for Data Science For Dummies

Python for Data Science For Dummies

Now it's time to start using some more complex instruments for data wrangling (or munging) and for machine learning. The final step of most data science projects is to build a data tool able to automatically summarize, predict, ...

Author: John Paul Mueller

Publisher: John Wiley & Sons

ISBN: 9781119547648

Category: Computers

Page: 496

View: 291

The fast and easy way to learn Python programming and statistics Python is a general-purpose programming language created in the late 1980s—and named after Monty Python—that's used by thousands of people to do things from testing microchips at Intel, to powering Instagram, to building video games with the PyGame library. Python For Data Science For Dummies is written for people who are new to data analysis, and discusses the basics of Python data analysis programming and statistics. The book also discusses Google Colab, which makes it possible to write Python code in the cloud. Get started with data science and Python Visualize information Wrangle data Learn from data The book provides the statistical background needed to get started in data science programming, including probability, random distributions, hypothesis testing, confidence intervals, and building regression models for prediction.
Categories: Computers

Managing Data Science

Managing Data Science

Effective strategies to manage data science projects and build a sustainable team Kirill Dubovikov ... When deploying Python code for data science projects, you have several options: Regular Python scripts: You just deploy a bunch of ...

Author: Kirill Dubovikov

Publisher: Packt Publishing Ltd

ISBN: 9781838824563

Category: Computers

Page: 290

View: 353

Understand data science concepts and methodologies to manage and deliver top-notch solutions for your organization Key Features Learn the basics of data science and explore its possibilities and limitations Manage data science projects and assemble teams effectively even in the most challenging situations Understand management principles and approaches for data science projects to streamline the innovation process Book Description Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis. What you will learn Understand the underlying problems of building a strong data science pipeline Explore the different tools for building and deploying data science solutions Hire, grow, and sustain a data science team Manage data science projects through all stages, from prototype to production Learn how to use ModelOps to improve your data science pipelines Get up to speed with the model testing techniques used in both development and production stages Who this book is for This book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book.
Categories: Computers