Data Preprocessing in Data Mining

Author: Salvador García,Julián Luengo,Francisco Herrera

Publisher: Springer

ISBN: 3319102478

Category: Computers

Page: 320

View: 9452

DOWNLOAD NOW »

Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.
Release

Soft Modeling in Industrial Manufacturing

Author: Przemyslaw Grzegorzewski,Andrzej Kochanski,Janusz Kacprzyk

Publisher: Springer

ISBN: 3030032019

Category: Computers

Page: 196

View: 4533

DOWNLOAD NOW »

This book discusses the problems of complexity in industrial data, including the problems of data sources, causes and types of data uncertainty, and methods of data preparation for further reasoning in engineering practice. Each data source has its own specificity, and a characteristic property of industrial data is its high degree of uncertainty. The book also explores a wide spectrum of soft modeling methods with illustrations pertaining to specific cases from diverse industrial processes. In soft modeling the physical nature of phenomena may not be known and may not be taken into consideration. Soft models usually employ simplified mathematical equations derived directly from the data obtained as observations or measurements of the given system. Although soft models may not explain the nature of the phenomenon or system under study, they usually point to its significant features or properties.
Release

New Contributions in Information Systems and Technologies

Author: Alvaro Rocha,Ana Maria Correia,Sandra Costanzo,Luis Paulo Reis

Publisher: Springer

ISBN: 3319164864

Category: Computers

Page: 1250

View: 6806

DOWNLOAD NOW »

This book contains a selection of articles from The 2015 World Conference on Information Systems and Technologies (WorldCIST'15), held between the 1st and 3rd of April in Funchal, Madeira, Portugal, a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences and challenges of modern Information Systems and Technologies research, technological development and applications. The main topics covered are: Information and Knowledge Management; Organizational Models and Information Systems; Intelligent and Decision Support Systems; Big Data Analytics and Applications; Software Systems, Architectures, Applications and Tools; Multimedia Systems and Applications; Computer Networks, Mobility and Pervasive Systems; Human-Computer Interaction; Health Informatics; Information Technologies in Education; Information Technologies in Radio communications.
Release

International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018

Author: Jude Hemanth,Xavier Fernando,Pavel Lafata,Zubair Baig

Publisher: Springer

ISBN: 3030031462

Category: Computers

Page: 1590

View: 9371

DOWNLOAD NOW »

This book discusses data communication and computer networking, communication technologies and the applications of IoT (Internet of Things), big data, cloud computing and healthcare informatics. It explores, examines and critiques intelligent data communications and presents inventive methodologies in communication technologies and IoT. Aimed at researchers and academicians who need to understand the importance of data communication and advanced technologies in IoT, it offers different perspectives to help readers increase their knowledge and motivates them to conduct research in the area, highlighting various innovative ideas for future research.
Release

Artificial Intelligence Applications and Innovations

AIAI 2019 IFIP WG 12.5 International Workshops: MHDW and 5G-PINE 2019, Hersonissos, Crete, Greece, May 24–26, 2019, Proceedings

Author: John MacIntyre,Ilias Maglogiannis,Lazaros Iliadis,Elias Pimenidis

Publisher: Springer

ISBN: 3030199096

Category: Computers

Page: 244

View: 9010

DOWNLOAD NOW »

This book constitutes the refereed proceedings of two International Workshops held as parallel events of the 15th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2019, in Hersonissos, Crete, Greece, in May 2019: the 8th Mining Humanistic Data Workshop, MHDW 2019, and the 4th Workshop on 5G-Putting Intelligence to the Network Edge, 5G-PINE 2019. The 6 full papers and 4 short papers presented at MHDW 2019 were carefully reviewed and selected from 13 submissions; out of the 14 papers submitted to 5G-PINE 2019, 6 were accepted as full papers and 1 as short paper. The MHDW papers focus on the application of innovative as well as existing data matching, fusion and mining and knowledge discovery and management techniques (such as decision rules, decision trees, association rules, ontologies and alignments, clustering, filtering, learning, classifier systems, neural networks, support vector machines, preprocessing, post processing, feature selection, visualization techniques) to data derived from all areas of humanistic sciences, e.g., linguistic, historical, behavioral, psychological, artistic, musical, educational, social, and ubiquitous computing and bioinformatics. The papers presented at 5G-PINE focus on several innovative findings coming directly from modern European research in the area of modern 5G telecommunications infrastructures and related innovative services and cover a wide variety of technical and business aspects promoting options for growth and development.
Release

Data Mining: Concepts and Techniques

Author: Jiawei Han,Jian Pei,Micheline Kamber

Publisher: Elsevier

ISBN: 9780123814807

Category: Computers

Page: 744

View: 3511

DOWNLOAD NOW »

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Release

Data Mining and Knowledge Discovery Handbook

Author: Oded Maimon,Lior Rokach

Publisher: Springer Science & Business Media

ISBN: 038725465X

Category: Computers

Page: 1383

View: 9512

DOWNLOAD NOW »

Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
Release

Machine Learning Paradigms

Advances in Data Analytics

Author: George A. Tsihrintzis,Dionisios N. Sotiropoulos,Lakhmi C. Jain

Publisher: Springer

ISBN: 3319940309

Category: Computers

Page: 370

View: 5930

DOWNLOAD NOW »

This book explores some of the emerging scientific and technological areas in which the need for data analytics arises and is likely to play a significant role in the years to come. At the dawn of the 4th Industrial Revolution, data analytics is emerging as a force that drives towards dramatic changes in our daily lives, the workplace and human relationships. Synergies between physical, digital, biological and energy sciences and technologies, brought together by non-traditional data collection and analysis, drive the digital economy at all levels and offer new, previously-unavailable opportunities. The need for data analytics arises in most modern scientific disciplines, including engineering; natural-, computer- and information sciences; economics; business; commerce; environment; healthcare; and life sciences. Coming as the third volume under the general title MACHINE LEARNING PARADIGMS, the book includes an editorial note (Chapter 1) and an additional 12 chapters, and is divided into five parts: (1) Data Analytics in the Medical, Biological and Signal Sciences, (2) Data Analytics in Social Studies and Social Interactions, (3) Data Analytics in Traffic, Computer and Power Networks, (4) Data Analytics for Digital Forensics, and (5) Theoretical Advances and Tools for Data Analytics. This research book is intended for both experts/researchers in the field of data analytics, and readers working in the fields of artificial and computational intelligence as well as computer science in general who wish to learn more about the field of data analytics and its applications. An extensive list of bibliographic references at the end of each chapter guides readers to probe further into the application areas of interest to them.
Release

Intelligent Information and Database Systems

11th Asian Conference, ACIIDS 2019, Yogyakarta, Indonesia, April 8-11, 2019, Proceedings

Author: Ngoc Thanh Nguyen (Computer scientist),Ford Lumban Gaol,Tzung-Pei Hong,Bogdan Trawiński

Publisher: Springer

ISBN: 3030147991

Category: Artificial intelligence

Page: 754

View: 3430

DOWNLOAD NOW »

The two-volume set LNAI 11431 and 11432 constitutes the refereed proceedings of the 11th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2019, held in Yogyakarta, Indonesia, in April 2019. [...] The papers of the first volume are organized in the following topical sections: knowledge engineering and semantic web; text processing and information retrieval; machine learning and data mining; decision support and control systems; computer vision techniques; and databases and intelligent information systems. --
Release

Feature Extraction, Construction and Selection

A Data Mining Perspective

Author: Huan Liu,Hiroshi Motoda

Publisher: Springer Science & Business Media

ISBN: 9780792381969

Category: Computers

Page: 410

View: 7435

DOWNLOAD NOW »

There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-art techniques that can boost the capabilities of many existing data mining tools. The objective of this collection is to increase the awareness of the data mining community about the research of feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of our endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches. Even with today's advanced computer technologies, discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Feature extraction, construction and selection are a set of techniques that transform and simplify data so as to make data mining tasks easier. Feature construction and selection can be viewed as two sides of the representation problem.
Release