CUDA for Engineers

An Introduction to High-Performance Parallel Computing

Author: Duane Storti,Mete Yurtoglu

Publisher: Addison-Wesley Professional

ISBN: 013417755X

Category: Computers

Page: 352

View: 1240

DOWNLOAD NOW »

CUDA for Engineers gives you direct, hands-on engagement with personal, high-performance parallel computing, enabling you to do computations on a gaming-level PC that would have required a supercomputer just a few years ago. The authors introduce the essentials of CUDA C programming clearly and concisely, quickly guiding you from running sample programs to building your own code. Throughout, you’ll learn from complete examples you can build, run, and modify, complemented by additional projects that deepen your understanding. All projects are fully developed, with detailed building instructions for all major platforms. Ideal for any scientist, engineer, or student with at least introductory programming experience, this guide assumes no specialized background in GPU-based or parallel computing. In an appendix, the authors also present a refresher on C programming for those who need it. Coverage includes Preparing your computer to run CUDA programs Understanding CUDA’s parallelism model and C extensions Transferring data between CPU and GPU Managing timing, profiling, error handling, and debugging Creating 2D grids Interoperating with OpenGL to provide real-time user interactivity Performing basic simulations with differential equations Using stencils to manage related computations across threads Exploiting CUDA’s shared memory capability to enhance performance Interacting with 3D data: slicing, volume rendering, and ray casting Using CUDA libraries Finding more CUDA resources and code Realistic example applications include Visualizing functions in 2D and 3D Solving differential equations while changing initial or boundary conditions Viewing/processing images or image stacks Computing inner products and centroids Solving systems of linear algebraic equations Monte-Carlo computations
Release

CUDA by Example

An Introduction to General-Purpose GPU Programming, Portable Documents

Author: Jason Sanders,Edward Kandrot

Publisher: Addison-Wesley Professional

ISBN: 0132180138

Category: Computers

Page: 312

View: 6870

DOWNLOAD NOW »

CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html
Release

Programming Massively Parallel Processors

A Hands-on Approach

Author: David B. Kirk,Wen-mei W. Hwu

Publisher: Elsevier

ISBN: 9780123814739

Category: Computers

Page: 280

View: 6934

DOWNLOAD NOW »

Programming Massively Parallel Processors discusses the basic concepts of parallel programming and GPU architecture. Various techniques for constructing parallel programs are explored in detail. Case studies demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This book describes computational thinking techniques that will enable students to think about problems in ways that are amenable to high-performance parallel computing. It utilizes CUDA (Compute Unified Device Architecture), NVIDIA's software development tool created specifically for massively parallel environments. Studies learn how to achieve both high-performance and high-reliability using the CUDA programming model as well as OpenCL. This book is recommended for advanced students, software engineers, programmers, and hardware engineers. Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing. Utilizes CUDA (Compute Unified Device Architecture), NVIDIA's software development tool created specifically for massively parallel environments. Shows you how to achieve both high-performance and high-reliability using the CUDA programming model as well as OpenCL.
Release

CUDA Application Design and Development

Author: Rob Farber

Publisher: Elsevier

ISBN: 0123884322

Category: Computers

Page: 336

View: 974

DOWNLOAD NOW »

As the computer industry retools to leverage massively parallel graphics processing units (GPUs), this book is designed to meet the needs of working software developers who need to understand GPU programming with CUDA and increase efficiency in their projects. CUDA Application Design and Development starts with an introduction to parallel computing concepts for readers with no previous parallel experience, and focuses on issues of immediate importance to working software developers: achieving high performance, maintaining competitiveness, analyzing CUDA benefits versus costs, and determining application lifespan. The book then details the thought behind CUDA and teaches how to create, analyze, and debug CUDA applications. Throughout, the focus is on software engineering issues: how to use CUDA in the context of existing application code, with existing compilers, languages, software tools, and industry-standard API libraries. Using an approach refined in a series of well-received articles at Dr Dobb's Journal, author Rob Farber takes the reader step-by-step from fundamentals to implementation, moving from language theory to practical coding. Includes multiple examples building from simple to more complex applications in four key areas: machine learning, visualization, vision recognition, and mobile computing Addresses the foundational issues for CUDA development: multi-threaded programming and the different memory hierarchy Includes teaching chapters designed to give a full understanding of CUDA tools, techniques and structure. Presents CUDA techniques in the context of the hardware they are implemented on as well as other styles of programming that will help readers bridge into the new material
Release

A Practical Approach to High-Performance Computing

Author: Sergei Kurgalin,Sergei Borzunov

Publisher: Springer Nature

ISBN: 3030275582

Category: Computers

Page: 206

View: 1592

DOWNLOAD NOW »

The book discusses the fundamentals of high-performance computing. The authors combine visualization, comprehensibility, and strictness in their material presentation, and thus influence the reader towards practical application and learning how to solve real computing problems. They address both key approaches to programming modern computing systems: multithreading-based parallelizing in shared memory systems, and applying message-passing technologies in distributed systems. The book is suitable for undergraduate and graduate students, and for researchers and practitioners engaged with high-performance computing systems. Each chapter begins with a theoretical part, where the relevant terminology is introduced along with the basic theoretical results and methods of parallel programming, and concludes with a list of test questions and problems of varying difficulty. The authors include many solutions and hints, and often sample code.
Release

Introduction to High Performance Scientific Computing

Author: David L. Chopp

Publisher: SIAM

ISBN: 1611975638

Category: Mathematics

Page: 455

View: 8645

DOWNLOAD NOW »

Based on a course developed by the author, Introduction to High Performance Scientific Computing introduces methods for adding parallelism to numerical methods for solving differential equations. It contains exercises and programming projects that facilitate learning as well as examples and discussions based on the C programming language, with additional comments for those already familiar with C++. The text provides an overview of concepts and algorithmic techniques for modern scientific computing and is divided into six self-contained parts that can be assembled in any order to create an introductory course using available computer hardware. Part I introduces the C programming language for those not already familiar with programming in a compiled language. Part II describes parallelism on shared memory architectures using OpenMP. Part III details parallelism on computer clusters using MPI for coordinating a computation. Part IV demonstrates the use of graphical programming units (GPUs) to solve problems using the CUDA language for NVIDIA graphics cards. Part V addresses programming on GPUs for non-NVIDIA graphics cards using the OpenCL framework. Finally, Part VI contains a brief discussion of numerical methods and applications, giving the reader an opportunity to test the methods on typical computing problems.
Release

Programming Massively Parallel Processors

A Hands-on Approach

Author: David Kirk,Wen-mei Hwu

Publisher: Morgan Kaufmann Pub

ISBN: 9780124159921

Category: Computers

Page: 496

View: 9415

DOWNLOAD NOW »

Programming Massively Parallel Processors: A Hands-on Approach shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Various techniques for constructing parallel programs are explored in detail. Case studies demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This best-selling guide to CUDA and GPU parallel programming has been revised with more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. With these improvements, the book retains its concise, intuitive, practical approach based on years of road-testing in the authors' own parallel computing courses. Updates in this new edition include: New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing
Release

Parallel Programming

Concepts and Practice

Author: Bertil Schmidt,Jorge Gonzalez-Dominguez,Christian Hundt,Moritz Schlarb

Publisher: Morgan Kaufmann

ISBN: 0128044861

Category: Computers

Page: 416

View: 3542

DOWNLOAD NOW »

Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors’ open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings. Covers parallel programming approaches for single computer nodes and HPC clusters: OpenMP, multithreading, SIMD vectorization, MPI, UPC++ Contains numerous practical parallel programming exercises Includes access to an automated code evaluation tool that enables students the opportunity to program in a web browser and receive immediate feedback on the result validity of their program Features an example-based teaching of concept to enhance learning outcomes
Release

GPU Parallel Program Development Using CUDA

Author: Tolga Soyata

Publisher: CRC Press

ISBN: 1498750761

Category: Mathematics

Page: 440

View: 7977

DOWNLOAD NOW »

GPU Parallel Program Development using CUDA teaches GPU programming by showing the differences among different families of GPUs. This approach prepares the reader for the next generation and future generations of GPUs. The book emphasizes concepts that will remain relevant for a long time, rather than concepts that are platform-specific. At the same time, the book also provides platform-dependent explanations that are as valuable as generalized GPU concepts. The book consists of three separate parts; it starts by explaining parallelism using CPU multi-threading in Part I. A few simple programs are used to demonstrate the concept of dividing a large task into multiple parallel sub-tasks and mapping them to CPU threads. Multiple ways of parallelizing the same task are analyzed and their pros/cons are studied in terms of both core and memory operation. Part II of the book introduces GPU massive parallelism. The same programs are parallelized on multiple Nvidia GPU platforms and the same performance analysis is repeated. Because the core and memory structures of CPUs and GPUs are different, the results differ in interesting ways. The end goal is to make programmers aware of all the good ideas, as well as the bad ideas, so readers can apply the good ideas and avoid the bad ideas in their own programs. Part III of the book provides pointer for readers who want to expand their horizons. It provides a brief introduction to popular CUDA libraries (such as cuBLAS, cuFFT, NPP, and Thrust),the OpenCL programming language, an overview of GPU programming using other programming languages and API libraries (such as Python, OpenCV, OpenGL, and Apple’s Swift and Metal,) and the deep learning library cuDNN.
Release

Introduction to Reconfigurable Supercomputing

Author: Marco Lanzagorta,Stephen Bique,Robert Rosenberg

Publisher: Morgan & Claypool Publishers

ISBN: 1608453375

Category: Computers

Page: 103

View: 5605

DOWNLOAD NOW »

This book covers technologies, applications, tools, languages, procedures, advantages, and disadvantages of reconfigurable supercomputing using Field Programmable Gate Arrays (FPGAs). The target audience is the community of users of High Performance Computers (HPC) who may benefit from porting their applications into a reconfigurable environment. As such, this book is intended to guide the HPC user through the many algorithmic considerations, hardware alternatives, usability issues, programming languages, and design tools that need to be understood before embarking on the creation of reconfigurable parallel codes. We hope to show that FPGA acceleration, based on the exploitation of the data parallelism, pipelining and concurrency remains promising in view of the diminishing improvements in traditional processor and system design. Table of Contents: FPGA Technology / Reconfigurable Supercomputing / Algorithmic Considerations / FPGA Programming Languages / Case Study: Sorting / Alternative Technologies and Concluding Remarks
Release