Chaos

An Introduction to Dynamical Systems

Author: Kathleen Alligood,Tim Sauer,J.A. Yorke

Publisher: Springer

ISBN: 3642592813

Category: Mathematics

Page: 603

View: 9625

DOWNLOAD NOW »

BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.
Release

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Author: Morris W. Hirsch,Stephen Smale,Robert L. Devaney

Publisher: Academic Press

ISBN: 0123820103

Category: Mathematics

Page: 418

View: 7939

DOWNLOAD NOW »

Hirsch, Devaney, and Smale's classic Differential Equations, Dynamical Systems, and an Introduction to Chaos has been used by professors as the primary text for undergraduate and graduate level courses covering differential equations. It provides a theoretical approach to dynamical systems and chaos written for a diverse student population among the fields of mathematics, science, and engineering. Prominent experts provide everything students need to know about dynamical systems as students seek to develop sufficient mathematical skills to analyze the types of differential equations that arise in their area of study. The authors provide rigorous exercises and examples clearly and easily by slowly introducing linear systems of differential equations. Calculus is required as specialized advanced topics not usually found in elementary differential equations courses are included, such as exploring the world of discrete dynamical systems and describing chaotic systems. Classic text by three of the world's most prominent mathematicians Continues the tradition of expository excellence Contains updated material and expanded applications for use in applied studies
Release

Introduction to Discrete Dynamical Systems and Chaos

Author: Mario Martelli

Publisher: John Wiley & Sons

ISBN: 1118031121

Category: Mathematics

Page: 344

View: 4591

DOWNLOAD NOW »

A timely, accessible introduction to the mathematics ofchaos. The past three decades have seen dramatic developments in thetheory of dynamical systems, particularly regarding the explorationof chaotic behavior. Complex patterns of even simple processesarising in biology, chemistry, physics, engineering, economics, anda host of other disciplines have been investigated, explained, andutilized. Introduction to Discrete Dynamical Systems and Chaos makes theseexciting and important ideas accessible to students and scientistsby assuming, as a background, only the standard undergraduatetraining in calculus and linear algebra. Chaos is introduced at theoutset and is then incorporated as an integral part of the theoryof discrete dynamical systems in one or more dimensions. Both phasespace and parameter space analysis are developed with ampleexercises, more than 100 figures, and important practical examplessuch as the dynamics of atmospheric changes and neuralnetworks. An appendix provides readers with clear guidelines on how to useMathematica to explore discrete dynamical systems numerically.Selected programs can also be downloaded from a Wiley ftp site(address in preface). Another appendix lists possible projects thatcan be assigned for classroom investigation. Based on the author's1993 book, but boasting at least 60% new, revised, and updatedmaterial, the present Introduction to Discrete Dynamical Systemsand Chaos is a unique and extremely useful resource for allscientists interested in this active and intensely studiedfield. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available upon request from the Wileyeditorial department.
Release

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

ISBN: 1475740670

Category: Mathematics

Page: 672

View: 9802

DOWNLOAD NOW »

This volume is an introduction to applied nonlinear dynamics and chaos. The emphasis is on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains an extensive bibliography and a detailed glossary of terms.
Release

Chaos and Dynamical Systems

Author: David P. Feldman

Publisher: Princeton University Press

ISBN: 0691189390

Category: Mathematics

Page: N.A

View: 1938

DOWNLOAD NOW »

Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.
Release

An Introduction To Chaotic Dynamical Systems

Author: Robert Devaney

Publisher: CRC Press

ISBN: 0429981937

Category: Science

Page: 360

View: 4972

DOWNLOAD NOW »

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
Release

Nonlinear Dynamics and Quantum Chaos

An Introduction

Author: Sandro Wimberger

Publisher: Springer

ISBN: 331906343X

Category: Science

Page: 206

View: 8731

DOWNLOAD NOW »

The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Release

An Introduction to Dynamical Systems

Author: D. K. Arrowsmith,C. M. Place,C. H. Place,Arrowsmith/Place

Publisher: Cambridge University Press

ISBN: 9780521316507

Category: Mathematics

Page: 423

View: 862

DOWNLOAD NOW »

Largely self-contained, this is an introduction to the mathematical structures underlying models of systems whose state changes with time, and which therefore may exhibit "chaotic behavior." The first portion of the book is based on lectures given at the University of London and covers the background to dynamical systems, the fundamental properties of such systems, the local bifurcation theory of flows and diffeomorphisms and the logistic map and area-preserving planar maps. The authors then go on to consider current research in this field such as the perturbation of area-preserving maps of the plane and the cylinder. The text contains many worked examples and exercises, many with hints. It will be a valuable first textbook for senior undergraduate and postgraduate students of mathematics, physics, and engineering.
Release

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

ISBN: 1461418054

Category: Mathematics

Page: 1858

View: 4726

DOWNLOAD NOW »

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Release

Topological Dynamical Systems

An Introduction to the Dynamics of Continuous Mappings

Author: Jan Vries

Publisher: Walter de Gruyter

ISBN: 3110342405

Category: Mathematics

Page: 513

View: 807

DOWNLOAD NOW »

There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.
Release