Business Statistics in Practice: Using Data, Modeling, and Analytics

Author: Bruce Bowerman,Richard O'Connell,Emilly Murphree

Publisher: McGraw-Hill Education

ISBN: 9781259549465

Category: Business & Economics

Page: 912

View: 9462

DOWNLOAD NOW »

Business Statistics in Practice, Eighth Edition provides a modern, practical and unique framework for teaching an introductory course in Business Statistics. The textbook employs realistic examples, continuing case studies and a business improvement theme to teach the material. The Seventh Edition features more concise and lucid explanations, an improved topic flow and a sensible use of the best and most compelling examples. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, and how they need it, so that your class time is more engaging and effective.
Release

Handbook of Research on Strategic Performance Management and Measurement Using Data Envelopment Analysis

Author: Osman, Ibrahim H.

Publisher: IGI Global

ISBN: 1466644753

Category: Business & Economics

Page: 735

View: 2692

DOWNLOAD NOW »

Organizations can use the valuable tool of data envelopment analysis (DEA) to make informed decisions on developing successful strategies, setting specific goals, and identifying underperforming activities to improve the output or outcome of performance measurement. The Handbook of Research on Strategic Performance Management and Measurement Using Data Envelopment Analysis highlights the advantages of using DEA as a tool to improve business performance and identify sources of inefficiency in public and private organizations. These recently developed theories and applications of DEA will be useful for policymakers, managers, and practitioners in the areas of sustainable development of our society including environment, agriculture, finance, and higher education sectors.
Release

Business Statistics Made Easy in SAS

Author: Gregory Lee

Publisher: SAS Institute

ISBN: 162960044X

Category: Computers

Page: 384

View: 8289

DOWNLOAD NOW »

Learn or refresh core statistical methods for business with SAS® and approach real business analytics issues and techniques using a practical approach that avoids complex mathematics and instead employs easy-to-follow explanations. Business Statistics Made Easy in SAS® is designed as a user-friendly, practice-oriented, introductory text to teach businesspeople, students, and others core statistical concepts and applications. It begins with absolute core principles and takes you through an overview of statistics, data and data collection, an introduction to SAS®, and basic statistics (descriptive statistics and basic associational statistics). The book also provides an overview of statistical modeling, effect size, statistical significance and power testing, basics of linear regression, introduction to comparison of means, basics of chi-square tests for categories, extrapolating statistics to business outcomes, and some topical issues in statistics, such as big data, simulation, machine learning, and data warehousing. The book steers away from complex mathematical-based explanations, and it also avoids basing explanations on the traditional build-up of distributions, probability theory and the like, which tend to lose the practice-oriented reader. Instead, it teaches the core ideas of statistics through methods such as careful, intuitive written explanations, easy-to-follow diagrams, step-by-step technique implementation, and interesting metaphors. With no previous SAS experience necessary, Business Statistics Made Easy in SAS® is an ideal introduction for beginners. It is suitable for introductory undergraduate classes, postgraduate courses such as MBA refresher classes, and for the business practitioner. It is compatible with SAS® University Edition.
Release

Modern Business Statistics with Microsoft Excel

Author: David R. Anderson,Dennis J. Sweeney,Thomas A. Williams,Jeffrey D. Camm,James J. Cochran

Publisher: Cengage Learning

ISBN: 0357131525

Category: Business & Economics

Page: 1008

View: 1307

DOWNLOAD NOW »

Develop a strong conceptual understanding of statistics and its importance in business today with MODERN BUSINESS STATISTICS WITH MICROSOFT EXCEL, 7E. This best-selling, comprehensive edition balances real-world applications with an integrated focus on the latest version of Microsoft Excel. A clear presentation develops each statistical technique in an application setting. You master statistical methodology as each easy-to-follow explanation of a statistical procedure is followed by a discussion of how to use the latest Excel to perform the procedure. Step-by-step instructions and screen images reinforce understanding. For versatility, you also learn to use Excel Online and R. More than 160 new business examples, proven methods, and application exercises show how statistics provide insights into business decisions and problems. A unique problem-scenario approach emphasizes how to apply statistical methods to practical business situations, while new case problems let you check your understanding. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Release

Business Analytics for Managers

Author: Wolfgang Jank

Publisher: Springer Science & Business Media

ISBN: 9781461404064

Category: Business & Economics

Page: 189

View: 9672

DOWNLOAD NOW »

The practice of business is changing. More and more companies are amassing larger and larger amounts of data, and storing them in bigger and bigger data bases. Consequently, successful applications of data-driven decision making are plentiful and increasing on a daily basis. This book will motivate the need for data and data-driven solutions, using real data from real business scenarios. It will allow managers to better interact with personnel specializing in analytics by exposing managers and decision makers to the key ideas and concepts of data-driven decision making. Business Analytics for Managers conveys ideas and concepts from both statistics and data mining with the goal of extracting knowledge from real business data and actionable insight for managers. Throughout, emphasis placed on conveying data-driven thinking. While the ideas discussed in this book can be implemented using many different software solutions from many different vendors, it also provides a quick-start to one of the most powerful software solutions available. The main goals of this book are as follows: to excite managers and decision makers about the potential that resides in data and the value that data analytics can add to business processes and provide managers with a basic understanding of the main concepts of data analytics and a common language to convey data-driven decision problems so they can better communicate with personnel specializing in data mining or statistics.
Release

Essentials of Modern Business Statistics with Microsoft Office Excel (Book Only)

Author: David R. Anderson,Dennis J. Sweeney,Thomas A. Williams,Jeffrey D. Camm,James J. Cochran

Publisher: Cengage Learning

ISBN: 1337298352

Category: Business & Economics

Page: 816

View: 1465

DOWNLOAD NOW »

Discover an accessible introduction to business statistics as ESSENTIALS OF MODERN BUSINESS STATISTICS, 7E balances a conceptual understanding of statistics with real-world applications of statistical methodology. The book integrates Microsoft Excel 2016, providing step-by-step instructions and screen captures to help readers master the latest Excel tools. Extremely reader-friendly, this edition includes numerous tools to maximize the user's success, including Self-Test Exercises, margin annotations, insightful Notes and Comments, and real-world Methods and Applications exercises. Eleven new Case Problems, as well as new Statistics in Practice applications and real data examples and exercises, give readers opportunities to put concepts into practice. Readers find everything needed to acquire key Excel 2016 skills and gain a strong understanding of business statistics. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Release

Business Analytics Using R - A Practical Approach

Author: Umesh R Hodeghatta,Umesha Nayak

Publisher: Apress

ISBN: 1484225147

Category: Computers

Page: 280

View: 4147

DOWNLOAD NOW »

Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictive analytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. What You Will Learn • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem Who This Book Is For Beginners who want to understand and learn the fundamentals of analytics using R. Students, managers, executives, strategy and planning professionals, software professionals, and BI/DW professionals.
Release

Correlated Data Analysis: Modeling, Analytics, and Applications

Author: Peter X. -K. Song

Publisher: Springer Science & Business Media

ISBN: 038771393X

Category: Mathematics

Page: 352

View: 982

DOWNLOAD NOW »

This book covers recent developments in correlated data analysis. It utilizes the class of dispersion models as marginal components in the formulation of joint models for correlated data. This enables the book to cover a broader range of data types than the traditional generalized linear models. The reader is provided with a systematic treatment for the topic of estimating functions, and both generalized estimating equations (GEE) and quadratic inference functions (QIF) are studied as special cases. In addition to the discussions on marginal models and mixed-effects models, this book covers new topics on joint regression analysis based on Gaussian copulas.
Release

Modeling Techniques in Predictive Analytics

Business Problems and Solutions with R, Revised and Expanded Edition

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 0133886190

Category: Computers

Page: 384

View: 7638

DOWNLOAD NOW »

To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Release

Modeling Techniques in Predictive Analytics with Python and R

A Guide to Data Science

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 013389214X

Category: Computers

Page: 448

View: 9064

DOWNLOAD NOW »

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Release