Applying Data Science

Business Case Studies Using SAS

Author: Gerhard Svolba

Publisher: SAS Institute

ISBN: 163526054X

Category: Mathematics

Page: 490

View: 7237

DOWNLOAD NOW »

See how data science can answer the questions your business faces! Applying Data Science: Business Case Studies Using SAS, by Gerhard Svolba, shows you the benefits of analytics, how to gain more insight into your data, and how to make better decisions. In eight entertaining and real-world case studies, Svolba combines data science and advanced analytics with business questions, illustrating them with data and SAS code. The case studies range from a variety of fields, including performing headcount survival analysis for employee retention, forecasting the demand for new projects, using Monte Carlo simulation to understand outcome distribution, among other topics. The data science methods covered include Kaplan-Meier estimates, Cox Proportional Hazard Regression, ARIMA models, Poisson regression, imputation of missing values, variable clustering, and much more! Written for business analysts, statisticians, data miners, data scientists, and SAS programmers, Applying Data Science bridges the gap between high-level, business-focused books that skimp on the details and technical books that only show SAS code with no business context.
Release

Applied Analytics through Case Studies Using SAS and R

Implementing Predictive Models and Machine Learning Techniques

Author: Deepti Gupta

Publisher: Apress

ISBN: 1484235258

Category: Computers

Page: 404

View: 1651

DOWNLOAD NOW »

Examine business problems and use a practical analytical approach to solve them by implementing predictive models and machine learning techniques using SAS and the R analytical language. This book is ideal for those who are well-versed in writing code and have a basic understanding of statistics, but have limited experience in implementing predictive models and machine learning techniques for analyzing real world data. The most challenging part of solving industrial business problems is the practical and hands-on knowledge of building and deploying advanced predictive models and machine learning algorithms. Applied Analytics through Case Studies Using SAS and R is your answer to solving these business problems by sharpening your analytical skills. What You'll Learn Understand analytics and basic data concepts Use an analytical approach to solve Industrial business problems Build predictive model with machine learning techniques Create and apply analytical strategies Who This Book Is For Data scientists, developers, statisticians, engineers, and research students with a great theoretical understanding of data and statistics who would like to enhance their skills by getting practical exposure in data modeling.
Release

Applied Data Mining for Business and Industry

Author: Paolo Giudici,Silvia Figini

Publisher: John Wiley & Sons

ISBN: 0470058862

Category: Computers

Page: 249

View: 2583

DOWNLOAD NOW »

This new edition sees the inclusion of 70% new material, including eight new case studies, that brings this best selling title up to date with the many advances made in the field since its original publication. In the text all the methods described are either computational or of a statistical modelling nature; complex probabilistic models and mathematical tools are not used, so the book is accessible to a wide audience of both students and industry professionals.
Release

Learn Business Analytics in Six Steps Using SAS and R

A Practical, Step-by-Step Guide to Learning Business Analytics

Author: Subhashini Sharma Tripathi

Publisher: Apress

ISBN: 1484210018

Category: Computers

Page: 219

View: 6553

DOWNLOAD NOW »

Apply analytics to business problems using two very popular software tools, SAS and R. No matter your industry, this book will provide you with the knowledge and insights you and your business partners need to make better decisions faster. Learn Business Analytics in Six Steps Using SAS and R teaches you how to solve problems and execute projects through the "DCOVA and I" (Define, Collect, Organize, Visualize, Analyze, and Insights) process. You no longer need to choose between the two most popular software tools. This book puts the best of both worlds—SAS and R—at your fingertips to solve a myriad of problems, whether relating to data science, finance, web usage, product development, or any other business discipline. What You'll Learn Use the DCOVA and I process: Define, Collect, Organize, Visualize, Analyze and Insights. Harness both SAS and R, the star analytics technologies in the industry Use various tools to solve significant business challenges Understand how the tools relate to business analytics See seven case studies for hands-on practice Who This Book Is For This book is for all IT professionals, especially data analysts, as well as anyone who Likes to solve business problems and is good with logical thinking and numbers Wants to enter the analytics world and is looking for a structured book to reach that goal Is currently working on SAS , R, or any other analytics software and strives to use its full power
Release

Applied Data Science

Lessons Learned for the Data-Driven Business

Author: Martin Braschler,Thilo Stadelmann,Kurt Stockinger

Publisher: Springer

ISBN: 3030118215

Category: Computers

Page: 465

View: 5862

DOWNLOAD NOW »

This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
Release

Business Analytics Principles, Concepts, and Applications with SAS

What, Why, and How

Author: Marc J. Schniederjans,Dara G. Schniederjans,Christopher M. Starkey

Publisher: Pearson Education

ISBN: 0133989577

Category: Computers

Page: 352

View: 5414

DOWNLOAD NOW »

Learn everything you need to know to start using business analytics and integrating it throughout your organization. Business Analytics Principles, Concepts, and Applications with SAS brings together a complete, integrated package of knowledge for newcomers to the subject. The authors present an up-to-date view of what business analytics is, why it is so valuable, and most importantly, how it is used. They combine essential conceptual content with clear explanations of the tools, techniques, and methodologies actually used to implement modern business analytics initiatives. They offer a proven step-wise approach to designing an analytics program, and successfully integrating it into your organization, so it effectively provides intelligence for competitive advantage in decision making. Using step-by-step examples, the authors identify common challenges that can be addressed by business analytics, illustrate each type of analytics (descriptive, prescriptive, and predictive), and guide users in undertaking their own projects. Illustrating the real-world use of statistical, information systems, and management science methodologies, these examples help readers successfully apply the methods they are learning. Unlike most competitive guides, this text demonstrates the use of SAS software, permitting instructors to spend less time teaching software and more time focusing on business analytics itself. Business Analytics Principles, Concepts, and Applications with SAS will be a valuable resource for all beginning-to-intermediate level business analysts and business analytics managers; for MBA/Masters' degree students in the field; and for advanced undergraduates majoring in statistics, applied mathematics, or engineering/operations research.
Release

Analytics in a Big Data World

The Essential Guide to Data Science and its Applications

Author: Bart Baesens

Publisher: John Wiley & Sons

ISBN: 1118892704

Category: Business & Economics

Page: 256

View: 6953

DOWNLOAD NOW »

The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities.
Release

Applied Linear Models with SAS

Author: Daniel Zelterman

Publisher: Cambridge University Press

ISBN: 1139489003

Category: Medical

Page: N.A

View: 1637

DOWNLOAD NOW »

This textbook for a second course in basic statistics for undergraduates or first-year graduate students introduces linear regression models and describes other linear models including Poisson regression, logistic regression, proportional hazards regression, and nonparametric regression. Numerous examples drawn from the news and current events with an emphasis on health issues illustrate these concepts. Assuming only a pre-calculus background, the author keeps equations to a minimum and demonstrates all computations using SAS. Most of the programs and output are displayed in a self-contained way, with an emphasis on the interpretation of the output in terms of how it relates to the motivating example. Plenty of exercises conclude every chapter. All of the datasets and SAS programs are available from the book's website, along with other ancillary material.
Release

Applied Data Mining

Statistical Methods for Business and Industry

Author: Paolo Giudici

Publisher: John Wiley & Sons

ISBN: 0470871393

Category: Computers

Page: 376

View: 3425

DOWNLOAD NOW »

Data mining can be defined as the process of selection, exploration and modelling of large databases, in order to discover models and patterns. The increasing availability of data in the current information society has led to the need for valid tools for its modelling and analysis. Data mining and applied statistical methods are the appropriate tools to extract such knowledge from data. Applications occur in many different fields, including statistics, computer science, machine learning, economics, marketing and finance. This book is the first to describe applied data mining methods in a consistent statistical framework, and then show how they can be applied in practice. All the methods described are either computational, or of a statistical modelling nature. Complex probabilistic models and mathematical tools are not used, so the book is accessible to a wide audience of students and industry professionals. The second half of the book consists of nine case studies, taken from the author's own work in industry, that demonstrate how the methods described can be applied to real problems. Provides a solid introduction to applied data mining methods in a consistent statistical framework Includes coverage of classical, multivariate and Bayesian statistical methodology Includes many recent developments such as web mining, sequential Bayesian analysis and memory based reasoning Each statistical method described is illustrated with real life applications Features a number of detailed case studies based on applied projects within industry Incorporates discussion on software used in data mining, with particular emphasis on SAS Supported by a website featuring data sets, software and additional material Includes an extensive bibliography and pointers to further reading within the text Author has many years experience teaching introductory and multivariate statistics and data mining, and working on applied projects within industry A valuable resource for advanced undergraduate and graduate students of applied statistics, data mining, computer science and economics, as well as for professionals working in industry on projects involving large volumes of data - such as in marketing or financial risk management.
Release

Data Analytics Applications in Latin America and Emerging Economies

Author: Eduardo Rodriguez

Publisher: CRC Press

ISBN: 1351673165

Category: Business & Economics

Page: 272

View: 9497

DOWNLOAD NOW »

This book focuses on understanding the analytics knowledge management process and its comprehensive application to various socioeconomic sectors. Using cases from Latin America and other emerging economies, it examines analytics knowledge applications where a solution has been achieved. Written for business students and professionals as well as researchers, the book is filled with practical insight into applying concepts and implementing processes and solutions. The eleven case studies presented in the book incorporate the whole analytics process and are useful reference examples for applying the analytics process for SME organizations in both developing and developed economies. The cases also identify multiple tacit factors to deal with during the implementation of analytics knowledge management processes. These factors, which include data cleaning, data gathering, and interpretation of results, are not always easily identified by analytics practitioners. This book promotes the understanding of analytics methods and techniques. It guides readers through numerous techniques and methods available to analytics practitioners by explaining the strengths and weaknesses of these methods and techniques.
Release