An R and S-Plus Companion to Applied Regression

Author: John Fox,Georges Monette

Publisher: SAGE

ISBN: 9780761922803

Category: Mathematics

Page: 312

View: 8846

DOWNLOAD NOW »

"This book fits right into a needed niche: rigorous enough to give full explanation of the power of the S language, yet accessible enough to assign to social science graduate students without fear of intimidation. It is a tremendous balance of applied statistical "firepower" and thoughtful explanation. It meets all of the important mechanical needs: each example is given in detail, code and data are freely available, and the nuances of models are given rather than just the bare essentials. It also meets some important theoretical needs: linear models, categorical data analysis, an introduction to applying GLMs, a discussion of model diagnostics, and useful instructions on writing customized functions. " —JEFF GILL, University of Florida, Gainesville
Release

An R Companion to Applied Regression

Author: John Fox,Sanford Weisberg

Publisher: SAGE Publications

ISBN: 141297514X

Category: Social Science

Page: 449

View: 8800

DOWNLOAD NOW »

This book aims to provide a broad introduction to the R statistical environment in the context of applied regression analysis, which is typically studied by social scientists and others in a second course in applied statistics.
Release

Applied Regression Analysis, Linear Models, and Related Methods

Author: John Fox

Publisher: SAGE

ISBN: 9780803945401

Category: Social Science

Page: 597

View: 5142

DOWNLOAD NOW »

An accessible, detailed, and up-to-date treatment of regression analysis, linear models, and closely related methods is provided in this book. Incorporating nearly 200 graphs and numerous examples and exercises that employ real data from the social sciences, the book begins with a consideration of the role of statistical data analysis in social research. It then moves on to cover the following topics: graphical methods for examining and transforming data; linear least-squares regression; dummy-variables regression; analysis of variance; diagnostic methods for discovering whether a linear model fit to data adequately represents the data; extensions to linear least squares, including logit and probit models, time-series regression, nonlinear
Release

Modeling Techniques in Predictive Analytics with Python and R

A Guide to Data Science

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 013389214X

Category: Computers

Page: 448

View: 7445

DOWNLOAD NOW »

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Release

Web and Network Data Science

Modeling Techniques in Predictive Analytics

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 0133887642

Category: Computers

Page: 384

View: 5812

DOWNLOAD NOW »

Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.
Release

Modeling Techniques in Predictive Analytics

Business Problems and Solutions with R, Revised and Expanded Edition

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 0133886190

Category: Computers

Page: 384

View: 3213

DOWNLOAD NOW »

To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Release

A Course in Statistics with R

Author: Prabhanjan N. Tattar,Suresh Ramaiah,B. G. Manjunath

Publisher: John Wiley & Sons

ISBN: 1119152739

Category: Computers

Page: 696

View: 2205

DOWNLOAD NOW »

Integrates the theory and applications of statistics using R A Course in Statistics with R has been written to bridge the gap between theory and applications and explain how mathematical expressions are converted into R programs. The book has been primarily designed as a useful companion for a Masters student during each semester of the course, but will also help applied statisticians in revisiting the underpinnings of the subject. With this dual goal in mind, the book begins with R basics and quickly covers visualization and exploratory analysis. Probability and statistical inference, inclusive of classical, nonparametric, and Bayesian schools, is developed with definitions, motivations, mathematical expression and R programs in a way which will help the reader to understand the mathematical development as well as R implementation. Linear regression models, experimental designs, multivariate analysis, and categorical data analysis are treated in a way which makes effective use of visualization techniques and the related statistical techniques underlying them through practical applications, and hence helps the reader to achieve a clear understanding of the associated statistical models. Key features: Integrates R basics with statistical concepts Provides graphical presentations inclusive of mathematical expressions Aids understanding of limit theorems of probability with and without the simulation approach Presents detailed algorithmic development of statistical models from scratch Includes practical applications with over 50 data sets
Release

An R and S-Plus® Companion to Multivariate Analysis

Author: Brian S. Everitt

Publisher: Springer Science & Business Media

ISBN: 1852338822

Category: Computers

Page: 221

View: 8997

DOWNLOAD NOW »

Most data sets collected by researchers are multivariate, and in most cases, the variables need to be examined simultaneously to get the most informative results. This book covers the core multivariate methodology along with some basic theory for each method described. It also provides the necessary R and S-PLUS code for each analysis.
Release

Introduction to Robust Estimation and Hypothesis Testing

Author: Rand R. Wilcox

Publisher: Academic Press

ISBN: 012804781X

Category: Mathematics

Page: 810

View: 9980

DOWNLOAD NOW »

Introduction to Robust Estimating and Hypothesis Testing, 4th Editon, is a ‘how-to’ on the application of robust methods using available software. Modern robust methods provide improved techniques for dealing with outliers, skewed distribution curvature and heteroscedasticity that can provide substantial gains in power as well as a deeper, more accurate and more nuanced understanding of data. Since the last edition, there have been numerous advances and improvements. They include new techniques for comparing groups and measuring effect size as well as new methods for comparing quantiles. Many new regression methods have been added that include both parametric and nonparametric techniques. The methods related to ANCOVA have been expanded considerably. New perspectives related to discrete distributions with a relatively small sample space are described as well as new results relevant to the shift function. The practical importance of these methods is illustrated using data from real world studies. The R package written for this book now contains over 1200 functions. New to this edition 35% revised content Covers many new and improved R functions New techniques that deal with a wide range of situations Extensive revisions to cover the latest developments in robust regression Covers latest improvements in ANOVA Includes newest rank-based methods Describes and illustrated easy to use software
Release

Statistics

An Introduction Using R

Author: Michael J. Crawley

Publisher: John Wiley & Sons

ISBN: 1118941101

Category: Mathematics

Page: 360

View: 404

DOWNLOAD NOW »

"...I know of no better book of its kind..." (Journal ofthe Royal Statistical Society, Vol 169 (1), January2006) A revised and updated edition of this bestselling introductorytextbook to statistical analysis using the leading free softwarepackage R This new edition of a bestselling title offers a conciseintroduction to a broad array of statistical methods, at a levelthat is elementary enough to appeal to a wide range ofdisciplines. Step-by-step instructions help thenon-statistician to fully understand the methodology. Thebook covers the full range of statistical techniques likely to beneeded to analyse the data from research projects, includingelementary material like t--tests and chi--squared tests,intermediate methods like regression and analysis of variance, andmore advanced techniques like generalized linear modelling. Includes numerous worked examples and exercises within eachchapter.
Release