An Introductory Course in Computational Neuroscience

Author: Paul Miller

Publisher: MIT Press

ISBN: 0262038250

Category: Science

Page: 408

View: 1946

DOWNLOAD NOW »

A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.
Release

Computational Neuroscience

A First Course

Author: Hanspeter A Mallot

Publisher: Springer Science & Business Media

ISBN: 3319008617

Category: Computers

Page: 135

View: 2098

DOWNLOAD NOW »

Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.
Release

Computational Neuroscience and Cognitive Modelling

A Student's Introduction to Methods and Procedures

Author: Britt Anderson

Publisher: SAGE

ISBN: 1446297373

Category: Psychology

Page: 240

View: 1216

DOWNLOAD NOW »

"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.
Release

From Neuron to Cognition Via Computational Neuroscience

Author: Michael A. Arbib,James J. Bonaiuto

Publisher: MIT Press

ISBN: 0262034964

Category: Computers

Page: 808

View: 2259

DOWNLOAD NOW »

A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition.
Release

Computational Explorations in Cognitive Neuroscience

Understanding the Mind by Simulating the Brain

Author: Randall C. O'Reilly,Yuko Munakata

Publisher: MIT Press

ISBN: 9780262650540

Category: Computers

Page: 504

View: 7731

DOWNLOAD NOW »

This text, based on a course taught by Randall O'Reilly and Yuko Munakata over thepast several years, provides an in-depth introduction to the main ideas in the computationalcognitive neuroscience.
Release

Fundamentals of Computational Neuroscience

Author: Thomas Trappenberg

Publisher: Oxford University Press

ISBN: 0199568413

Category: Mathematics

Page: 390

View: 4602

DOWNLOAD NOW »

The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. It introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain. The book covers the introduction and motivation of simplified models of neurons that are suitable for exploring information processing in large brain-like networks. Additionally, it introduces several fundamental networkarchitectures and discusses their relevance for information processing in the brain, giving some examples of models of higher-order cognitive functions to demonstrate the advanced insight that can begained with such studies.
Release

Introduction to Dynamic Modeling of Neuro-Sensory Systems

Author: Robert B. Northrop

Publisher: CRC Press

ISBN: 142004172X

Category: Medical

Page: 488

View: 3615

DOWNLOAD NOW »

Although neural modeling has a long history, most of the texts available on the subject are quite limited in scope, dealing primarily with the simulation of large-scale biological neural networks applicable to describing brain function. Introduction to Dynamic Modeling of Neuro-Sensory Systems presents the mathematical tools and methods that can describe and predict the dynamic behavior of single neurons, small assemblies of neurons devoted to a single tasks, as well as larger sensory arrays and their underlying neuropile. Focusing on small and medium-sized biological neural networks, the author pays particular attention to visual feature extraction, especially the compound eye visual system and the vertebrate retina. For computational efficiency, the treatment avoids molecular details of neuron function and uses the locus approach for medium-scale modeling of arrays. Rather than requiring readers to learn a dedicated simulation program, the author uses the general, nonlinear ordinary differential equation solver Simnonä for all examples and exercises. There is both art and science in setting up a computational model that can be validated from existing neurophysiological data. With clear prose, more than 200 figures and photographs, and unique focus, Introduction to Dynamic Modeling of Neuro-Sensory Systems develops the science, nurtures the art, and builds the foundation for more advanced work in neuroscience and the rapidly emerging field of neuroengineering.
Release

An Introduction to Modeling Neuronal Dynamics

Author: Christoph Börgers

Publisher: Springer

ISBN: 3319511718

Category: Mathematics

Page: 457

View: 1176

DOWNLOAD NOW »

This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.
Release

Network Neuroscience

Author: Flavio Fröhlich

Publisher: Academic Press

ISBN: 0128015861

Category: Medical

Page: 482

View: 5816

DOWNLOAD NOW »

Studying brain networks has become a truly interdisciplinary endeavor, attracting students and seasoned researchers alike from a wide variety of academic backgrounds. What has been lacking is an introductory textbook that brings together the different fields and provides a gentle introduction to the major concepts and findings in the emerging field of network neuroscience. Network Neuroscience is a one-stop-shop that is of equal use to the neurobiologist, who is interested in understanding the quantitative methods employed in network neuroscience, and to the physicist or engineer, who is interested in neuroscience applications of mathematical and engineering tools. The book spans 27 chapters that cover everything from individual cells all the way to complex network disorders such as depression and autism spectrum disorders. An additional 12 toolboxes provide the necessary background for making network neuroscience accessible independent of the reader’s background. Dr. Flavio Frohlich (www.networkneuroscientist.org) wrote this book based on his experience of mentoring dozens of trainees in the Frohlich Lab, from undergraduate students to senior researchers. The Frohlich lab (www.frohlichlab.org) pursues a unique and integrated vision that combines computer simulations, animal model studies, human studies, and clinical trials with the goal of developing novel brain stimulation treatments for psychiatric disorders. The book is based on a course he teaches at UNC that has attracted trainees from many different departments, including neuroscience, biomedical engineering, psychology, cell biology, physiology, neurology, and psychiatry. Dr. Frohlich has consistently received rave reviews for his teaching. With this book he hopes to make his integrated view of neuroscience available to trainees and researchers on a global scale. His goal is to make the book the training manual for the next generation of (network) neuroscientists, who will be fusing biology, engineering, and medicine to unravel the big questions about the brain and to revolutionize psychiatry and neurology. Easy-to-read, comprehensive introduction to the emerging field of network neuroscience Includes 27 chapters packed with information on topics from single neurons to complex network disorders such as depression and autism Features 12 toolboxes serve as primers to provide essential background knowledge in the fields of biology, mathematics, engineering, and physics
Release

Biophysics of Computation

Information Processing in Single Neurons

Author: Christof Koch

Publisher: Oxford University Press

ISBN: 0195181999

Category: Medical

Page: 562

View: 7610

DOWNLOAD NOW »

Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.
Release