An Introduction to Continuum Mechanics

Author: J. N. Reddy

Publisher: Cambridge University Press

ISBN: 1139466402

Category: Technology & Engineering

Page: N.A

View: 3874

DOWNLOAD NOW »

This textbook on continuum mechanics reflects the modern view that scientists and engineers should be trained to think and work in multidisciplinary environments. A course on continuum mechanics introduces the basic principles of mechanics and prepares students for advanced courses in traditional and emerging fields such as biomechanics and nanomechanics. This text introduces the main concepts of continuum mechanics simply with rich supporting examples but does not compromise mathematically in providing the invariant form as well as component form of the basic equations and their applications to problems in elasticity, fluid mechanics, and heat transfer. The book is ideal for advanced undergraduate and beginning graduate students. The book features: derivations of the basic equations of mechanics in invariant (vector and tensor) form and specializations of the governing equations to various coordinate systems; numerous illustrative examples; chapter-end summaries; and exercise problems to test and extend the understanding of concepts presented.
Release

Introduction to Continuum Mechanics

Author: W Michael Lai,Erhard Krempl,David Rubin

Publisher: Elsevier

ISBN: 0080509134

Category: Technology & Engineering

Page: 570

View: 9421

DOWNLOAD NOW »

Introduction to Continuum Mechanics is a recently updated and revised text which is perfect for either introductory courses in an undergraduate engineering curriculum or for a beginning graduate course. Continuum Mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation, and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples of problems, many with solutions. Serves as either a introductory undergraduate course or a beginning graduate course textbook. Includes many problems with illustrations and answers.
Release

An Introduction to Continuum Mechanics

Author: Morton E. Gurtin

Publisher: Academic Press

ISBN: 9780080918495

Category: Science

Page: 265

View: 2248

DOWNLOAD NOW »

This book presents an introduction to the classical theories of continuum mechanics; in particular, to the theories of ideal, compressible, and viscous fluids, and to the linear and nonlinear theories of elasticity. These theories are important, not only because they are applicable to a majority of the problems in continuum mechanics arising in practice, but because they form a solid base upon which one can readily construct more complex theories of material behavior. Further, although attention is limited to the classical theories, the treatment is modern with a major emphasis on foundations and structure
Release

An Introduction to Continuum Mechanics

Author: J. N. Reddy,Junuthula Narasimha Reddy

Publisher: Cambridge University Press

ISBN: 1107025435

Category: Mathematics

Page: 470

View: 6106

DOWNLOAD NOW »

This best-selling textbook presents the concepts of continuum mechanics, and the second edition includes additional explanations, examples and exercises.
Release

Continuum Mechanics - Volume I

Author: José Merodio,Giuseppe Saccomandi

Publisher: EOLSS Publications

ISBN: 1848263724

Category:

Page: 460

View: 5986

DOWNLOAD NOW »

The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.
Release

Elasticity with Mathematica ®

An Introduction to Continuum Mechanics and Linear Elasticity

Author: Andrei Constantinescu,Alexander Korsunsky

Publisher: Cambridge University Press

ISBN: 1139465627

Category: Science

Page: N.A

View: 4142

DOWNLOAD NOW »

This book, first published in 2007, introduces key ideas and principles in the theory of elasticity with the help of symbolic computation. Differential and integral operators on vector and tensor fields of displacements, strains and stresses are considered on a consistent and rigorous basis with respect to curvilinear orthogonal coordinate systems. As a consequence, vector and tensor objects can be manipulated readily, and fundamental concepts can be illustrated and problems solved with ease. The method is illustrated using a variety of plane and three-dimensional elastic problems. General theorems, fundamental solutions, displacements and stress potentials are presented and discussed. The Rayleigh-Ritz method for obtaining approximate solutions is introduced for elastostatic and spectral analysis problems. Containing more than 60 exercises and solutions in the form of Mathematica notebooks that accompany every chapter, the reader can learn and master the techniques while applying them to a large range of practical and fundamental problems.
Release

A One-dimensional Introduction to Continuum Mechanics

Author: Anthony John Roberts

Publisher: World Scientific

ISBN: 9789810219130

Category: Science

Page: 162

View: 5242

DOWNLOAD NOW »

Many textbooks on continuum mechanics plunge students in at the ?deep end? of three-dimensional analysis and applications. However a striking number of commonplace models of our physical environment are based entirely within the dynamics of a one-dimensional continuum. This introductory text therefore approaches the subject entirely within such a one-dimensional framework.The principles of the mathematical modeling of one-dimensional media constitute the book's backbone. These concepts are elucidated with a diverse selection of applications, ranging from tidal dynamics and dispersion in channels to beam bending, algal blooms, blood flow, and the greenhouse effect.The book is ideally suited to elementary undergraduate courses as it makes no use of multivariable calculus. A number of graded problems are included at the end of each section.
Release

An Introduction to Continuum Mechanics - after Truesdell and Noll

Author: D.R Smith

Publisher: Springer Science & Business Media

ISBN: 9401707138

Category: Technology & Engineering

Page: 352

View: 2520

DOWNLOAD NOW »

This book provides a brief introduction to rational continuum mechanics in a form suitable for students of engineering, mathematics and science. The presentation is tightly focused on the simplest case of the classical mechanics of nonpolar materials, leaving aside the effects of internal structure, temperature and electromagnetism, and excluding other mathematical models, such as statistical mechanics, relativistic mechanics and quantum mechanics. Within the limitations of the simplest mechanical theory, the author had provided a text that is largely self-contained. Though the book is primarily an introduction to continuum mechanics, the lure and attraction inherent in the subject may also recommend the book as a vehicle by which the student can obtain a broader appreciation of certain important methods and results from classical and modern analysis.
Release

Notes on Continuum Mechanics

Author: Eduardo WV Chaves

Publisher: Springer Science & Business Media

ISBN: 940075986X

Category: Science

Page: 700

View: 1612

DOWNLOAD NOW »

This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately. The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.
Release