Algebraic Geometry for Scientists and Engineers

Author: Shreeram Shankar Abhyankar

Publisher: American Mathematical Soc.

ISBN: 0821815350

Category: Mathematics

Page: 295

View: 4579

DOWNLOAD NOW »

This book, based on lectures presented in courses on algebraic geometry taught by the author at Purdue University, is intended for engineers and scientists (especially computer scientists), as well as graduate students and advanced undergraduates in mathematics. In addition to providing a concrete or algorithmic approach to algebraic geometry, the author also attempts to motivate and explain its link to more modern algebraic geometry based on abstract algebra.The book covers various topics in the theory of algebraic curves and surfaces, such as rational and polynomial parametrization, functions and differentials on a curve, branches and valuations, and resolution of singularities. The emphasis is on presenting heuristic ideas and suggestive arguments rather than formal proofs. Readers will gain new insight into the subject of algebraic geometry in a way that should increase appreciation of modern treatments of the subject, as well as enhance its utility in applications in science and industry.
Release

Computational Methods in Commutative Algebra and Algebraic Geometry

Author: Wolmer Vasconcelos

Publisher: Springer Science & Business Media

ISBN: 9783540213116

Category: Mathematics

Page: 408

View: 5372

DOWNLOAD NOW »

This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.
Release

Introduction to Algebraic Geometry

Author: Steven Dale Cutkosky

Publisher: American Mathematical Soc.

ISBN: 1470435187

Category: Geometry, Algebraic

Page: 484

View: 4394

DOWNLOAD NOW »

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Release

A Study of Singularities on Rational Curves Via Syzygies

Author: David A. Cox,Andrew R. Kustin,Claudia Polini,Bernd Ulrich

Publisher: American Mathematical Soc.

ISBN: 0821887432

Category: Mathematics

Page: 116

View: 3217

DOWNLOAD NOW »

Consider a rational projective curve $\mathcal{C}$ of degree $d$ over an algebraically closed field $\pmb k$. There are $n$ homogeneous forms $g_{1},\dots, g_{n}$ of degree $d$ in $B=\pmb k[x, y]$ which parameterize $\mathcal{C}$ in a birational, base point free, manner. The authors study the singularities of $\mathcal{C}$ by studying a Hilbert-Burch matrix $\varphi$ for the row vector $[g_{1},\dots, g_{n}]$. In the ``General Lemma'' the authors use the generalized row ideals of $\varphi$ to identify the singular points on $\mathcal{C}$, their multiplicities, the number of branches at each singular point, and the multiplicity of each branch. Let $p$ be a singular point on the parameterized planar curve $\mathcal{C}$ which corresponds to a generalized zero of $\varphi$. In the `'triple Lemma'' the authors give a matrix $\varphi'$ whose maximal minors parameterize the closure, in $\mathbb{P}^{2}$, of the blow-up at $p$ of $\mathcal{C}$ in a neighborhood of $p$. The authors apply the General Lemma to $\varphi'$ in order to learn about the singularities of $\mathcal{C}$ in the first neighborhood of $p$. If $\mathcal{C}$ has even degree $d=2c$ and the multiplicity of $\mathcal{C}$ at $p$ is equal to $c$, then he applies the Triple Lemma again to learn about the singularities of $\mathcal{C}$ in the second neighborhood of $p$. Consider rational plane curves $\mathcal{C}$ of even degree $d=2c$. The authors classify curves according to the configuration of multiplicity $c$ singularities on or infinitely near $\mathcal{C}$. There are $7$ possible configurations of such singularities. They classify the Hilbert-Burch matrix which corresponds to each configuration. The study of multiplicity $c$ singularities on, or infinitely near, a fixed rational plane curve $\mathcal{C}$ of degree $2c$ is equivalent to the study of the scheme of generalized zeros of the fixed balanced Hilbert-Burch matrix $\varphi$ for a parameterization of $\mathcal{C}$.
Release

Spectral Theory and Analytic Geometry Over Non-Archimedean Fields

Author: Vladimir G. Berkovich

Publisher: American Mathematical Soc.

ISBN: 9780821815342

Category: Mathematics

Page: 169

View: 5173

DOWNLOAD NOW »

The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and p -adic analysis.
Release

Algebraic Curves over a Finite Field

Author: J. W.P. Hirschfeld,G. Korchmáros,F. Torres

Publisher: Princeton University Press

ISBN: 1400847419

Category: Mathematics

Page: 744

View: 8915

DOWNLOAD NOW »

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.
Release