Advanced Materials for Thermal Management of Electronic Packaging

Author: Xingcun Colin Tong

Publisher: Springer Science & Business Media

ISBN: 9781441977595

Category: Technology & Engineering

Page: 618

View: 5797

DOWNLOAD NOW »

The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry’s ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionary advances in thermal management materials and technologies for active and passive cooling that promise integrable and cost-effective thermal management solutions. This book meets the need for a comprehensive approach to advanced thermal management in electronic packaging, with coverage of the fundamentals of heat transfer, component design guidelines, materials selection and assessment, air, liquid, and thermoelectric cooling, characterization techniques and methodology, processing and manufacturing technology, balance between cost and performance, and application niches. The final chapter presents a roadmap and future perspective on developments in advanced thermal management materials for electronic packaging.
Release

Die-Attach Materials for High Temperature Applications in Microelectronics Packaging

Materials, Processes, Equipment, and Reliability

Author: Kim S. Siow

Publisher: Springer

ISBN: 3319992562

Category: Technology & Engineering

Page: 279

View: 372

DOWNLOAD NOW »

This book presents the scientific principles, processing conditions, probable failure mechanisms, and a description of reliability performance and equipment required for implementing high-temperature and lead-free die attach materials. In particular, it addresses the use of solder alloys, silver and copper sintering, and transient liquid-phase sintering. While different solder alloys have been used widely in the microelectronics industry, the implementation of sintering silver and transient liquid-phase sintering remains limited to a handful of companies. Hence, the book devotes many chapters to sintering technologies, while simultaneously providing only a cursory coverage of the more widespread techniques employing solder alloys. Addresses the differences between sintering and soldering (the current die-attach technologies), thereby comprehensively addressing principles, methods, and performance of these high-temperature die-attach materials; Emphasizes the industrial perspective, with chapters written by engineers who have hands-on experience using these technologies; Baker Hughes, Bosch and ON Semiconductor, are represented as well as materials suppliers such as Indium; Simultaneously provides the detailed science underlying these technologies by leading academic researchers in the field.
Release

Handbook of 3D Integration, Volume 1

Technology and Applications of 3D Integrated Circuits

Author: Philip Garrou,Christopher Bower,Peter Ramm

Publisher: John Wiley & Sons

ISBN: 352762306X

Category: Technology & Engineering

Page: 798

View: 3540

DOWNLOAD NOW »

The first encompassing treatise of this new, but very important field puts the known physical limitations for classic 2D electronics into perspective with the requirements for further electronics developments and market necessities. This two-volume handbook presents 3D solutions to the feature density problem, addressing all important issues, such as wafer processing, die bonding, packaging technology, and thermal aspects. It begins with an introductory part, which defines necessary goals, existing issues and relates 3D integration to the semiconductor roadmap of the industry. Before going on to cover processing technology and 3D structure fabrication strategies in detail. This is followed by fields of application and a look at the future of 3D integration. The contributions come from key players in the field, from both academia and industry, including such companies as Lincoln Labs, Fraunhofer, RPI, ASET, IMEC, CEA-LETI, IBM, and Renesas.
Release

Handbook of Silicon Based MEMS Materials and Technologies

Author: Markku Tilli,Teruaki Motooka,Veli-Matti Airaksinen,Sami Franssila,Mervi Paulasto-Krockel,Veikko Lindroos

Publisher: William Andrew

ISBN: 0323312233

Category: Technology & Engineering

Page: 826

View: 1860

DOWNLOAD NOW »

The Handbook of Silicon Based MEMS Materials and Technologies, Second Edition, is a comprehensive guide to MEMS materials, technologies, and manufacturing that examines the state-of-the-art with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains the fundamentals, properties (mechanical, electrostatic, optical, etc.), materials selection, preparation, manufacturing, processing, system integration, measurement, and materials characterization techniques, sensors, and multi-scale modeling methods of MEMS structures, silicon crystals, and wafers, also covering micromachining technologies in MEMS and encapsulation of MEMS components. Furthermore, it provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques, shows how to protect devices from the environment, and provides tactics to decrease package size for a dramatic reduction in costs. Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques Shows how to protect devices from the environment and decrease package size for a dramatic reduction in packaging costs Discusses properties, preparation, and growth of silicon crystals and wafers Explains the many properties (mechanical, electrostatic, optical, etc.), manufacturing, processing, measuring (including focused beam techniques), and multiscale modeling methods of MEMS structures Geared towards practical applications rather than theory
Release

Science Abstracts

Electrical & electronics abstracts. Series B

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Electrical engineering

Page: N.A

View: 6904

DOWNLOAD NOW »

Release