A Course in Statistics with R

Author: Prabhanjan N. Tattar,Suresh Ramaiah,B. G. Manjunath

Publisher: John Wiley & Sons

ISBN: 1119152739

Category: Computers

Page: 696

View: 1794

DOWNLOAD NOW »

Integrates the theory and applications of statistics using R A Course in Statistics with R has been written to bridge the gap between theory and applications and explain how mathematical expressions are converted into R programs. The book has been primarily designed as a useful companion for a Masters student during each semester of the course, but will also help applied statisticians in revisiting the underpinnings of the subject. With this dual goal in mind, the book begins with R basics and quickly covers visualization and exploratory analysis. Probability and statistical inference, inclusive of classical, nonparametric, and Bayesian schools, is developed with definitions, motivations, mathematical expression and R programs in a way which will help the reader to understand the mathematical development as well as R implementation. Linear regression models, experimental designs, multivariate analysis, and categorical data analysis are treated in a way which makes effective use of visualization techniques and the related statistical techniques underlying them through practical applications, and hence helps the reader to achieve a clear understanding of the associated statistical models. Key features: Integrates R basics with statistical concepts Provides graphical presentations inclusive of mathematical expressions Aids understanding of limit theorems of probability with and without the simulation approach Presents detailed algorithmic development of statistical models from scratch Includes practical applications with over 50 data sets
Release

Exam Prep for: A Course in Statistics With R

Author: David Mason

Publisher: Rico Publications

ISBN: N.A

Category: Education

Page: 800

View: 7276

DOWNLOAD NOW »

3,600 Exam Prep questions and answers. Ebooks, Textbooks, Courses, Books Simplified as questions and answers by Rico Publications. Very effective study tools especially when you only have a limited amount of time. They work with your textbook or without a textbook and can help you to review and learn essential terms, people, places, events, and key concepts.
Release

Statistics with R

A Beginner's Guide

Author: Robert Stinerock

Publisher: SAGE

ISBN: 152642147X

Category: Social Science

Page: 392

View: 8051

DOWNLOAD NOW »

The dynamic, student focused textbook provides step-by-step instruction in the use of R and of statistical language as a general research tool. It is ideal for anyone hoping to: Complete an introductory course in statistics Prepare for more advanced statistical courses Gain the transferable analytical skills needed to interpret research from across the social sciences Learn the technical skills needed to present data visually Acquire a basic competence in the use of R. The book provides readers with the conceptual foundation to use applied statistical methods in everyday research. Each statistical method is developed within the context of practical, real-world examples and is supported by carefully developed pedagogy and jargon-free definitions. Theory is introduced as an accessible and adaptable tool and is always contextualized within the pragmatic context of real research projects and definable research questions. Author Robert Stinerock has also created a wide range of online resources, including: R scripts, complete solutions for all exercises, data files for each chapter, video and screen casts, and interactive multiple-choice quizzes.
Release

Discrete Data Analysis with R

Visualization and Modeling Techniques for Categorical and Count Data

Author: Michael Friendly,David Meyer

Publisher: CRC Press

ISBN: 1498725856

Category: Mathematics

Page: 562

View: 709

DOWNLOAD NOW »

An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Release

The Book of R

A First Course in Programming and Statistics

Author: Tilman M. Davies

Publisher: No Starch Press

ISBN: 1593276516

Category: Computers

Page: 832

View: 8769

DOWNLOAD NOW »

The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: *The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops *Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R *How to access R’s thousands of functions, libraries, and data sets *How to draw valid and useful conclusions from your data *How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Release

Graphics for Statistics and Data Analysis with R

Author: Kevin J. Keen

Publisher: CRC Press

ISBN: 143988269X

Category: Mathematics

Page: 489

View: 3945

DOWNLOAD NOW »

Graphics for Statistics and Data Analysis with R presents the basic principles of sound graphical design and applies these principles to engaging examples using the graphical functions available in R. It offers a wide array of graphical displays for the presentation of data, including modern tools for data visualization and representation. The book considers graphical displays of a single discrete variable, a single continuous variable, and then two or more of each of these. It includes displays and the R code for producing the displays for the dot chart, bar chart, pictographs, stemplot, boxplot, and variations on the quantile-quantile plot. The author discusses nonparametric and parametric density estimation, diagnostic plots for the simple linear regression model, polynomial regression, and locally weighted polynomial regression for producing a smooth curve through data on a scatterplot. The last chapter illustrates visualizing multivariate data with examples using Trellis graphics. Showing how to use graphics to display or summarize data, this text provides best practice guidelines for producing and choosing among graphical displays. It also covers the most effective graphing functions in R. R code is available for download on the book’s website.
Release

Statistical Computing with R

Author: Maria L. Rizzo

Publisher: CRC Press

ISBN: 1584885459

Category: Mathematics

Page: 416

View: 3244

DOWNLOAD NOW »

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.
Release

Statistics (the Easier Way) with R

An Informal Text on Applied Statistics

Author: Nicole M. Radziwill

Publisher: N.A

ISBN: 9780692339428

Category: Regression analysis

Page: 536

View: 7670

DOWNLOAD NOW »

"Designed for beginning and intermediate data scientists, graduate students starting research, undergraduate students taking a first or second applied statistics class, quality improvement professionals, and consultants, this unique book provides an integrated treatment of statistical inference techniques in data analysis. Each example is solved analytically (using equations), and then also in the R software so that readers can see exactly how the computations are performed. Each technique is framed within an easy-to-apply 12-step methodology that will make planning and presenting research a breeze. If you're new to statistics, data science, or R, this book will help get you started. If you have some experience already, this book will make you more productive and enhance your understanding of foundational statistical concepts."--Back cover
Release

A First Course in Statistical Programming with R

Author: W. John Braun,Duncan J. Murdoch

Publisher: Cambridge University Press

ISBN: 1316715248

Category: Computers

Page: N.A

View: 6887

DOWNLOAD NOW »

This new color edition of Braun and Murdoch's bestselling textbook integrates use of the RStudio platform and adds discussion of newer graphics systems, extensive exploration of Markov chain Monte Carlo, expert advice on common error messages, motivating applications of matrix decompositions, and numerous new examples and exercises. This is the only introduction needed to start programming in R, the computing standard for analyzing data. Co-written by an R core team member and an established R author, this book comes with real R code that complies with the standards of the language. Unlike other introductory books on the R system, this book emphasizes programming, including the principles that apply to most computing languages, and techniques used to develop more complex projects. Solutions, datasets, and any errata are available from the book's website. The many examples, all from real applications, make it particularly useful for anyone working in practical data analysis.
Release

Multivariate Time Series Analysis

With R and Financial Applications

Author: Ruey S. Tsay

Publisher: John Wiley & Sons

ISBN: 1118617754

Category: Mathematics

Page: 520

View: 9611

DOWNLOAD NOW »

An accessible guide to the multivariate time series toolsused in numerous real-world applications Multivariate Time Series Analysis: With R and FinancialApplications is the much anticipated sequel coming from one ofthe most influential and prominent experts on the topic of timeseries. Through a fundamental balance of theory and methodology,the book supplies readers with a comprehensible approach tofinancial econometric models and their applications to real-worldempirical research. Differing from the traditional approach to multivariate timeseries, the book focuses on reader comprehension by emphasizingstructural specification, which results in simplified parsimoniousVAR MA modeling. Multivariate Time Series Analysis: With R andFinancial Applications utilizes the freely available Rsoftware package to explore complex data and illustrate relatedcomputation and analyses. Featuring the techniques and methodologyof multivariate linear time series, stationary VAR models, VAR MAtime series and models, unitroot process, factor models, andfactor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce thepresented content • User-friendly R subroutines and research presentedthroughout to demonstrate modern applications • Numerous datasets and subroutines to provide readerswith a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbookfor graduate-level courses on time series and quantitative financeand upper-undergraduate level statistics courses in time series.The book is also an indispensable reference for researchers andpractitioners in business, finance, and econometrics.
Release