3D Flash Memories

Author: Rino Micheloni

Publisher: Springer

ISBN: 9401775125

Category: Computers

Page: 380

View: 6083

DOWNLOAD NOW »

This book walks the reader through the next step in the evolution of NAND flash memory technology, namely the development of 3D flash memories, in which multiple layers of memory cells are grown within the same piece of silicon. It describes their working principles, device architectures, fabrication techniques and practical implementations, and highlights why 3D flash is a brand new technology. After reviewing market trends for both NAND and solid state drives (SSDs), the book digs into the details of the flash memory cell itself, covering both floating gate and emerging charge trap technologies. There is a plethora of different materials and vertical integration schemes out there. New memory cells, new materials, new architectures (3D Stacked, BiCS and P-BiCS, 3D FG, 3D VG, 3D advanced architectures); basically, each NAND manufacturer has its own solution. Chapter 3 to chapter 7 offer a broad overview of how 3D can materialize. The 3D wave is impacting emerging memories as well and chapter 8 covers 3D RRAM (resistive RAM) crosspoint arrays. Visualizing 3D structures can be a challenge for the human brain: this is way all these chapters contain a lot of bird’s-eye views and cross sections along the 3 axes. The second part of the book is devoted to other important aspects, such as advanced packaging technology (i.e. TSV in chapter 9) and error correction codes, which have been leveraged to improve flash reliability for decades. Chapter 10 describes the evolution from legacy BCH to the most recent LDPC codes, while chapter 11 deals with some of the most recent advancements in the ECC field. Last but not least, chapter 12 looks at 3D flash memories from a system perspective. Is 14nm the last step for planar cells? Can 100 layers be integrated within the same piece of silicon? Is 4 bit/cell possible with 3D? Will 3D be reliable enough for enterprise and datacenter applications? These are some of the questions that this book helps answering by providing insights into 3D flash memory design, process technology and applications.
Release

NAND Flash Memory Technologies

Author: Seiichi Aritome

Publisher: John Wiley & Sons

ISBN: 1119132606

Category: Computers

Page: 432

View: 7922

DOWNLOAD NOW »

Offers a comprehensive overview of NAND flash memories, with insights into NAND history, technology, challenges, evolutions, and perspectives Describes new program disturb issues, data retention, power consumption, and possible solutions for the challenges of 3D NAND flash memory Written by an authority in NAND flash memory technology, with over 25 years’ experience
Release

Inside Solid State Drives (SSDs)

Author: Rino Micheloni,Alessia Marelli,Kam Eshghi

Publisher: Springer

ISBN: 9811305994

Category: Science

Page: 485

View: 8908

DOWNLOAD NOW »

The revised second edition of this respected text provides a state-of-the-art overview of the main topics relating to solid state drives (SSDs), covering NAND flash memories, memory controllers (including booth hardware and software), I/O interfaces (PCIe/SAS/SATA), reliability, error correction codes (BCH and LDPC), encryption, flash signal processing and hybrid storage. Updated throughout to include all recent work in the field, significant changes for the new edition include: A new chapter on flash memory errors and data recovery procedures in SSDs for reliability and lifetime improvement Updated coverage of SSD Architecture and PCI Express Interfaces moving from PCIe Gen3 to PCIe Gen4 and including a section on NVMe over fabric (NVMf) An additional section on 3D flash memories An update on standard reliability procedures for SSDs Expanded coverage of BCH for SSDs, with a specific section on detection A new section on non-binary Low-Density Parity-Check (LDPC) codes, the most recent advancement in the field A description of randomization in the protection of SSD data against attacks, particularly relevant to 3D architectures The SSD market is booming, with many industries placing a huge effort in this space, spending billions of dollars in R&D and product development. Moreover, flash manufacturers are now moving to 3D architectures, thus enabling an even higher level of storage capacity. This book takes the reader through the fundamentals and brings them up to speed with the most recent developments in the field, and is suitable for advanced students, researchers and engineers alike.
Release

Integrated Interconnect Technologies for 3D Nanoelectronic Systems

Author: Muhannad S. Bakir,James D. Meindl

Publisher: Artech House

ISBN: 1596932473

Category: Technology & Engineering

Page: 528

View: 9706

DOWNLOAD NOW »

This cutting-edge book on off-chip technologies puts the hottest breakthroughs in high-density compliant electrical interconnects, nanophotonics, and microfluidics at your fingertips, integrating the full range of mathematics, physics, and technology issues together in a single comprehensive source. You get full details on state-of-the-art I/O interconnects and packaging, including mechanically compliant I/O approaches, fabrication, and assembly, followed by the latest advances and applications in power delivery design, analysis, and modeling. The book explores interconnect structures, materials, and packages for achieving high-bandwidth off-chip electrical communication, including optical interconnects and chip-to-chip signaling approaches, and brings you up to speed on CMOS integrated optical devices, 3D integration, wafer stacking technology, and through-wafer interconnects.
Release

Vertical 3D Memory Technologies

Author: Betty Prince

Publisher: John Wiley & Sons

ISBN: 1118760468

Category: Technology & Engineering

Page: 368

View: 603

DOWNLOAD NOW »

The large scale integration and planar scaling of individualsystem chips is reaching an expensive limit. If individual chipsnow, and later terrabyte memory blocks, memory macros, andprocessing cores, can be tightly linked in optimally designed andprocessed small footprint vertical stacks, then performance can beincreased, power reduced and cost contained. This book reviews forthe electronics industry engineer, professional and student thecritical areas of development for 3D vertical memory chipsincluding: gate-all-around and junction-less nanowire memories,stacked thin film and double gate memories, terrabit verticalchannel and vertical gate stacked NAND flash, large scale stackingof Resistance RAM cross-point arrays, and 2.5D/3D stacking ofmemory and processor chips with through-silicon-via connections now and remote links later. Key features: Presents a review of the status and trends in 3-dimensionalvertical memory chip technologies. Extensively reviews advanced vertical memory chip technologyand development Explores technology process routes and 3D chip integration in asingle reference
Release

Solid-State-Drives (SSDs) Modeling

Simulation Tools & Strategies

Author: Rino Micheloni

Publisher: Springer

ISBN: 331951735X

Category: Technology & Engineering

Page: 170

View: 9973

DOWNLOAD NOW »

This book introduces simulation tools and strategies for complex systems of solid-state-drives (SSDs) which consist of a flash multi-core microcontroller plus NAND flash memories. It provides a broad overview of the most popular simulation tools, with special focus on open source solutions. VSSIM, NANDFlashSim and DiskSim are benchmarked against performances of real SSDs under different traffic workloads. PROs and CONs of each simulator are analyzed, and it is clearly indicated which kind of answers each of them can give and at a what price. It is explained, that speed and precision do not go hand in hand, and it is important to understand when to simulate what, and with which tool. Being able to simulate SSD’s performances is mandatory to meet time-to-market, together with product cost and quality. Over the last few years the authors developed an advanced simulator named “SSDExplorer” which has been used to evaluate multiple phenomena with great accuracy, from QoS (Quality Of Service) to Read Retry, from LDPC Soft Information to power, from Flash aging to FTL. SSD simulators are also addressed in a broader context in this book, i.e. the analysis of what happens when SSDs are connected to the OS (Operating System) and to the end-user application (for example, a database search). The authors walk the reader through the full simulation flow of a real system-level by combining SSD Explorer with the QEMU virtual platform. The reader will be impressed by the level of know-how and the combination of models that such simulations are asking for.
Release