Worlds Out of Nothing

A Course in the History of Geometry in the 19th Century

Author: Jeremy Gray

Publisher: Springer Science & Business Media

ISBN: 9780857290601

Category: Mathematics

Page: 384

View: 8616

Based on the latest historical research, Worlds Out of Nothing is the first book to provide a course on the history of geometry in the 19th century. Topics covered in the first part of the book are projective geometry, especially the concept of duality, and non-Euclidean geometry. The book then moves on to the study of the singular points of algebraic curves (Plücker’s equations) and their role in resolving a paradox in the theory of duality; to Riemann’s work on differential geometry; and to Beltrami’s role in successfully establishing non-Euclidean geometry as a rigorous mathematical subject. The final part of the book considers how projective geometry rose to prominence, and looks at Poincaré’s ideas about non-Euclidean geometry and their physical and philosophical significance. Three chapters are devoted to writing and assessing work in the history of mathematics, with examples of sample questions in the subject, advice on how to write essays, and comments on what instructors should be looking for.
Release

Geometry: The Line and the Circle

Author: Maureen T. Carroll,Elyn Rykken

Publisher: American Mathematical Soc.

ISBN: 1470448432

Category: Geometry

Page: 480

View: 4032

Geometry: The Line and the Circle is an undergraduate text with a strong narrative that is written at the appropriate level of rigor for an upper-level survey or axiomatic course in geometry. Starting with Euclid's Elements, the book connects topics in Euclidean and non-Euclidean geometry in an intentional and meaningful way, with historical context. The line and the circle are the principal characters driving the narrative. In every geometry considered—which include spherical, hyperbolic, and taxicab, as well as finite affine and projective geometries—these two objects are analyzed and highlighted. Along the way, the reader contemplates fundamental questions such as: What is a straight line? What does parallel mean? What is distance? What is area? There is a strong focus on axiomatic structures throughout the text. While Euclid is a constant inspiration and the Elements is repeatedly revisited with substantial coverage of Books I, II, III, IV, and VI, non-Euclidean geometries are introduced very early to give the reader perspective on questions of axiomatics. Rounding out the thorough coverage of axiomatics are concluding chapters on transformations and constructibility. The book is compulsively readable with great attention paid to the historical narrative and hundreds of attractive problems.
Release

Model Theory and the Philosophy of Mathematical Practice

Author: John Baldwin,John T. Baldwin

Publisher: Cambridge University Press

ISBN: 1107189217

Category: Mathematics

Page: 384

View: 2755

Recounts the modern transformation of model theory and its effects on the philosophy of mathematics and mathematical practice.
Release

Perspectives on Projective Geometry

A Guided Tour Through Real and Complex Geometry

Author: Jürgen Richter-Gebert

Publisher: Springer Science & Business Media

ISBN: 9783642172861

Category: Mathematics

Page: 571

View: 4399

Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.
Release

Mathematik im mittelalterlichen Islam

Author: J. L. Berggren

Publisher: Springer-Verlag

ISBN: 9783540766889

Category: Mathematics

Page: 200

View: 7898

Die Mathematik im mittelalterlichen Islam hatte großen Einfluss auf die allgemeine Entwicklung des Faches. Der Autor beschreibt diese Periode der Geschichte der Mathematik und bezieht sich dabei auf die arabischsprachigen Quellen. Zu den behandelten Themen gehören Dezimalrechnen, Geometrie, ebene und sphärische Trigonometrie, Algebra sowie die Approximation von Wurzeln von Gleichungen. Das Buch wendet sich an Mathematikhistoriker und -studenten, aber auch an alle Interessierten mit Mathematikkenntnissen der weiterführenden Schule.
Release

Grundlagen der Geometrie

Author: David Hilbert

Publisher: SEVERUS Verlag

ISBN: 3863479467

Category: Mathematics

Page: 248

View: 2772

Seine Erkenntnisse beeinflussen bis heute die Forschung: David Hilbert baut in seinen „Grundlagen der Geometrie“ auf Euklids Lehre ein Grundsatzsystem auf, von dem ausgehend er wichtige geometrische Sätze ableitet. Die erstmals 1899 erschienene Abhandlung machte Hilbert zu einem der wichtigsten Mathematiker der Neuzeit, der auch den Formalismus entscheidend prägte.
Release

Hyperbolic Geometry

Author: James Anderson

Publisher: Springer Science & Business Media

ISBN: 9781852339340

Category: Mathematics

Page: 276

View: 7213

Thoroughly updated, featuring new material on important topics such as hyperbolic geometry in higher dimensions and generalizations of hyperbolicity Includes full solutions for all exercises Successful first edition sold over 800 copies in North America
Release

Pangeometrie

Author: N.J. Lobatschefskij

Publisher: N.A

ISBN: N.A

Category:

Page: N.A

View: 7654

Release

Geschichte der Analysis

Author: Hans Niels Jahnke

Publisher: Spektrum Akademischer Verlag

ISBN: 9783827403926

Category: Mathematics

Page: 564

View: 1871

"Geschichte der Analysis" ist von einem internationalen Expertenteam geschrieben und stellt die gegenwärtig umfassendste Darstellung der Herausbildung und Entwicklung dieser mathematischen Kerndisziplin dar. Der tiefgreifende begriffliche Wandel, den die Analysis im Laufe der Zeit durchgemacht hat, wird ebenso dargestellt, wie auch der Einfluß, den vor allem physikalische Probleme gehabt haben. Biographische und philosophische Hintergründe werden ausgeleuchtet und ihre Relevanz für die Theorieentwicklung gezeigt. Neben der eigentlichen Geschichte der Analysis bis ungefähr 1900 enthält das Buch Spezialkapitel über die Entwicklung der analytischen Mechanik im 18. Jahrhundert, Randwertprobleme der mathematischen Physik im 19. Jahrhundert, die Theorie der komplexen Funktionen, die Grundlagenkrise sowie historische Überblicke über die Variationsrechnung, Differentialgleichungen und Funktionalanalysis.
Release

Choice

Publication of the Association of College and Research Libraries, a Division of the American Library Association

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Academic libraries

Page: N.A

View: 5504

Release

Angewandte Mathematik: Body and Soul

Band 2: Integrale und Geometrie in IRn

Author: Kenneth Eriksson,Donald Estep,Claes Johnson

Publisher: Springer-Verlag

ISBN: 3540269509

Category: Mathematics

Page: 362

View: 5346

"Angewandte Mathematik: Body & Soul" ist ein neuer Grundkurs in der Mathematikausbildung für Studienanfänger in den Naturwissenschaften, der Technik, und der Mathematik, der an der Chalmers Tekniska Högskola in Göteborg entwickelt wurde. Er besteht aus drei Bänden sowie Computer-Software. Das Projekt ist begründet in der Computerrevolution, die ihrerseits völlig neue Möglichkeiten des wissenschaftlichen Rechnens in der Mathematik, den Naturwissenschaften und im Ingenieurwesen eröffnet hat. Es besteht aus einer Synthese der mathematischen Analysis (Soul) mit der numerischen Berechnung (Body) sowie den Anwendungen. Die Bände I-III geben eine moderne Version der Analysis und der linearen Algebra wieder, einschließlich konstruktiver numerischer Techniken und Anwendungen, zugeschnitten auf Anfängerprogramme im Maschinenbau und den Naturwissenschaften. Weitere Bände behandeln Themen wie z.B. dynamische Systeme, Strömungsdynamik, Festkörpermechanik und Elektromagnetismus. Dieser Band entwickelt das Riemann-Integral, um eine Funktion zu einer gegebenen Ableitung zu bestimmen. Darauf aufbauend werden Differentialgleichungen und Anfangswertprobleme mit einer Vielzahl anschaulicher Anwendungen behandelt. Die lineare Algebra wird auf n-dimensionale Räume verallgemeinert, wobei wiederum dem praktischen Umgang und numerischen Lösungstechniken besonderer Platz eingeräumt wird. Die Autoren sind führende Experten im Gebiet des wissenschaftlichen Rechnens und haben schon mehrere erfolgreiche Bücher geschrieben. "[......] Oh, by the way, I suggest immediate purchase of all three volumes!" The Mathematical Association of America Online, 7.7.04
Release

János Bolyai

Die ersten 200 Jahre

Author: Tibor Weszely

Publisher: Springer-Verlag

ISBN: 3034600461

Category: Mathematics

Page: 283

View: 6008

Biographie des ungarischen Mathematikers János Bolyai (1802-1860), der etwa gleichzeitig mit dem russischen Mathematiker Nikolai Lobatschewski und unabhängig von ihm die nichteuklidische Revolution eingeleitet hat. Diese erbrachte den Nachweis, dass die euklidische Geometrie keine Denknotwendigkeit ist, wie Kant irrtümlicherweise annahm. Das Verständnis für die kühnen Gedankengänge verbreitete sich allerdings erst in der zweiten Hälfte des 19. Jahrhunderts durch die Arbeiten von Riemann, Beltrami, Klein und Poincaré. Die nichteuklidische Revolution war eine der Grundlagen für die Entwicklung der Physik im 20. Jahrhundert und für Einsteins Erkenntnis, dass der uns umgebende reale Raum gekrümmt ist. Tibor Weszely schildert das wechselvolle Leben des Offiziers der K.u.K.-Armee, der krank und vereinsamt starb. Bolyai hat sich auch intensiv mit den komplexen Zahlen und mit Zahlentheorie befasst, ebenso auch mit philosophischen und sozialen Fragen („Allheillehre“) sowie mit Logik und Grammatik.
Release

Principia Mathematica.

Author: Alfred North Whitehead,Bertrand Russell

Publisher: N.A

ISBN: N.A

Category: Logic, Symbolic and mathematical

Page: 167

View: 3249

Release

Newtons Werk

Die Begründung der modernen Naturwissenschaft

Author: FAUVEL,FLOOD,SHORTLAND,WILSON

Publisher: Springer-Verlag

ISBN: 3034862237

Category: Juvenile Nonfiction

Page: 325

View: 5971

Release

Zahlen

Author: Heinz-Dieter Ebbinghaus,Hans Hermes,Friedrich Hirzebruch,Max Koecher,Klaus Mainzer,Jürgen Neukirch,Alexander Prestel,Reinhold Remmert

Publisher: Springer-Verlag

ISBN: 3642971229

Category: Mathematics

Page: 337

View: 5045

Aus den Besprechungen: "Ein Mathematikbuch der Superlativen, für Mathematiker (jeder Schattierung) und Nichtmathematiker (denen völlig unbekannte Dimensionen der Mathematik eröffnet werden - künstlerische, magische, historische, philosophische, wissenschaftstheoretische, "unlogische", phantasieerfüllte usw.). Der Aufbau ist meisterhaft, die Lektüre höchst anregend und leicht lesbar." Monatshefte für Mathematik #1 "Ein gelungenes Werk, das dem Vorurteil entgegenwirkt, Mathematik bestehe nur aus isolierten Theorien." Die NEUE HOCHSCHULE #1 "Das Lesen ist ein Genuß, den man sich nicht entgehen lassen sollte." Jahresbericht der Deutschen Mathematiker-Vereinigung #1
Release

Poincarés Vermutung

die Geschichte eines mathematischen Abenteuers

Author: Donal O'Shea

Publisher: N.A

ISBN: 9783596176632

Category:

Page: 376

View: 1728

Release

Erfahrung Mathematik

Author: P.J. Davis,R. Hersh

Publisher: Springer-Verlag

ISBN: 3034850409

Category: Science

Page: 466

View: 2277

ie ältesten uns bekannten mathematischen Schriftta D feln stammen aus der Zeit um 2400 v. ehr. ; aber wir dürfen davon ausgehen, daß das Bedürfnis, Mathematik zu schaffen, ein Ausdruck der menschlichen Zivilisation an sich ist. In vier bis fünf Jahrtausenden hat sich ein gewalti ges System von Praktiken und Begriffen - die Mathematik herangebildet, die in vielfältiger Weise mit unserem Alltag verknüpft ist. Was ist Mathematik? Was bedeutet sie? Wo mit befaßt sie sich? Was sind ihre Methoden? Wie wird sie geschaffen und benützt? Wo ist ihr Platz in der Vielgestalt der menschlichen Erfahrung? Welchen Nutzen bringt sie? Was für Schaden richtet sie an? Welches Gewicht kommt ihr zu? Diese schwierigen Fragen werden noch zusätzlich kompliziert durch die Fülle des Materials und die weitver zweigten Querverbindungen, die es dem einzelnen verun möglichen, alles zu begreifen, geschweige denn, es in seiner Gesamtheit zu erfassen und zwischen den Deckeln eines normalen Buches unterzubringen. Um von dieser Material fülle nicht erdrückt zu werden, haben sich die Autoren für eine andere Betrachtungsweise entschieden. Die Mathema tik ist seit Tausenden von Jahren ein Feld menschlicher Ak tivität. In begrenztem Rahmen ist jeder von uns ein Mathe matiker und betreibt bewußt Mathematik, wenn er zum Beispiel auf dem Markt einkauft, Tapeten ausmißt oder ei nen Keramiktopf mit einem regelmäßigen Muster verziert. In bescheidenem Ausmaß versucht sich auch jeder von uns als mathematischer Denker. Schon mit dem Ausruf «Aber Zahlen lügen nicht!» befinden wir uns in der Gesellschaft von Plato oder Lakatos.
Release