The Topology of Fibre Bundles. (PMS-14)

Author: Norman Steenrod

Publisher: Princeton University Press

ISBN: 1400883873

Category: Mathematics

Page: 224

View: 2271

Fibre bundles, now an integral part of differential geometry, are also of great importance in modern physics--such as in gauge theory. This book, a succinct introduction to the subject by renown mathematician Norman Steenrod, was the first to present the subject systematically. It begins with a general introduction to bundles, including such topics as differentiable manifolds and covering spaces. The author then provides brief surveys of advanced topics, such as homotopy theory and cohomology theory, before using them to study further properties of fibre bundles. The result is a classic and timeless work of great utility that will appeal to serious mathematicians and theoretical physicists alike.
Release

The Topology of Fibre Bundles

Author: Norman Earl Steenrod

Publisher: Princeton University Press

ISBN: 9780691005485

Category: Mathematics

Page: 229

View: 9945

Fibre bundles, now an integral part of differential geometry, are also of great importance in modern physics--such as in gauge theory. This book, a succinct introduction to the subject by renown mathematician Norman Steenrod, was the first to present the subject systematically. It begins with a general introduction to bundles, including such topics as differentiable manifolds and covering spaces. The author then provides brief surveys of advanced topics, such as homotopy theory and cohomology theory, before using them to study further properties of fibre bundles. The result is a classic and timeless work of great utility that will appeal to serious mathematicians and theoretical physicists alike.
Release

Spin Geometry (PMS-38)

Author: H. Blaine Lawson,Marie-Louise Michelsohn

Publisher: Princeton University Press

ISBN: 1400883911

Category: Mathematics

Page: 440

View: 387

This book offers a systematic and comprehensive presentation of the concepts of a spin manifold, spinor fields, Dirac operators, and A-genera, which, over the last two decades, have come to play a significant role in many areas of modern mathematics. Since the deeper applications of these ideas require various general forms of the Atiyah-Singer Index Theorem, the theorems and their proofs, together with all prerequisite material, are examined here in detail. The exposition is richly embroidered with examples and applications to a wide spectrum of problems in differential geometry, topology, and mathematical physics. The authors consistently use Clifford algebras and their representations in this exposition. Clifford multiplication and Dirac operator identities are even used in place of the standard tensor calculus. This unique approach unifies all the standard elliptic operators in geometry and brings fresh insights into curvature calculations. The fundamental relationships of Clifford modules to such topics as the theory of Lie groups, K-theory, KR-theory, and Bott Periodicity also receive careful consideration. A special feature of this book is the development of the theory of Cl-linear elliptic operators and the associated index theorem, which connects certain subtle spin-corbordism invariants to classical questions in geometry and has led to some of the most profound relations known between the curvature and topology of manifolds.
Release

Singular Integrals and Differentiability Properties of Functions (PMS-30)

Author: Elias M. Stein

Publisher: Princeton University Press

ISBN: 1400883881

Category: Mathematics

Page: 304

View: 2339

Singular integrals are among the most interesting and important objects of study in analysis, one of the three main branches of mathematics. They deal with real and complex numbers and their functions. In this book, Princeton professor Elias Stein, a leading mathematical innovator as well as a gifted expositor, produced what has been called the most influential mathematics text in the last thirty-five years. One reason for its success as a text is its almost legendary presentation: Stein takes arcane material, previously understood only by specialists, and makes it accessible even to beginning graduate students. Readers have reflected that when you read this book, not only do you see that the greats of the past have done exciting work, but you also feel inspired that you can master the subject and contribute to it yourself. Singular integrals were known to only a few specialists when Stein's book was first published. Over time, however, the book has inspired a whole generation of researchers to apply its methods to a broad range of problems in many disciplines, including engineering, biology, and finance. Stein has received numerous awards for his research, including the Wolf Prize of Israel, the Steele Prize, and the National Medal of Science. He has published eight books with Princeton, including Real Analysis in 2005.
Release

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)

Author: Kari Astala,Tadeusz Iwaniec,Gaven Martin

Publisher: Princeton University Press

ISBN: 9780691137773

Category: Mathematics

Page: 677

View: 9249

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.
Release

Introduction to Fourier Analysis on Euclidean Spaces (PMS-32)

Author: Elias M. Stein,Guido Weiss

Publisher: Princeton University Press

ISBN: 140088389X

Category: Mathematics

Page: 312

View: 4508

The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.
Release

Fibre Bundles

Author: D. Husemöller

Publisher: Springer Science & Business Media

ISBN: 1475740085

Category: Mathematics

Page: 327

View: 9506

Release

Characteristic Classes

Author: John Willard Milnor,James D. Stasheff

Publisher: Princeton University Press

ISBN: 9780691081229

Category: Mathematics

Page: 330

View: 6400

The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.
Release

Etale Cohomology (PMS-33)

Author: James S. Milne

Publisher: Princeton University Press

ISBN: 1400883989

Category: Mathematics

Page: 344

View: 8847

One of the most important mathematical achievements of the past several decades has been A. Grothendieck's work on algebraic geometry. In the early 1960s, he and M. Artin introduced étale cohomology in order to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry, but also in several different branches of number theory and in the representation theory of finite and p-adic groups. Yet until now, the work has been available only in the original massive and difficult papers. In order to provide an accessible introduction to étale cohomology, J. S. Milne offers this more elementary account covering the essential features of the theory. The author begins with a review of the basic properties of flat and étale morphisms and of the algebraic fundamental group. The next two chapters concern the basic theory of étale sheaves and elementary étale cohomology, and are followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Professor Milne proves the fundamental theorems in étale cohomology -- those of base change, purity, Poincaré duality, and the Lefschetz trace formula. He then applies these theorems to show the rationality of some very general L-series. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Release

4-manifolds and Kirby Calculus

Author: Robert E. Gompf,András Stipsicz

Publisher: American Mathematical Soc.

ISBN: 0821809946

Category: Mathematics

Page: 558

View: 4449

Since the early 1980s, there has been an explosive growth in 4-manifold theory, particularly due to the influx of interest and ideas from gauge theory and algebraic geometry. This book offers an exposition of the subject from the topological point of view. It bridges the gap to other disciplines and presents classical but important topological techniques that have not previously appeared in the literature. Part I of the text presents the basics of the theory at the second-year graduate level and offers an overview of current research. Part II is devoted to an exposition of Kirby calculus, or handlebody theory on 4-manifolds. It is both elementary and comprehensive. Part III offers in-depth treatments of a broad range of topics from current 4-manifold research. Topics include branched coverings and the geography of complex surfaces, elliptic and Lefschetz fibrations, $h$-cobordisms, symplectic 4-manifolds, and Stein surfaces. The authors present many important applications. The text is supplemented with over 300 illustrations and numerous exercises, with solutions given in the book. I greatly recommend this wonderful book to any researcher in 4-manifold topology for the novel ideas, techniques, constructions, and computations on the topic, presented in a very fascinating way. I think really that every student, mathematician, and researcher interested in 4-manifold topology, should own a copy of this beautiful book. --Zentralblatt MATH This book gives an excellent introduction into the theory of 4-manifolds and can be strongly recommended to beginners in this field ... carefully and clearly written; the authors have evidently paid great attention to the presentation of the material ... contains many really pretty and interesting examples and a great number of exercises; the final chapter is then devoted to solutions of some of these ... this type of presentation makes the subject more attractive and its study easier. --European Mathematical Society Newsletter
Release

An Introduction to Contact Topology

Author: Hansjörg Geiges

Publisher: Cambridge University Press

ISBN: 1139467956

Category: Mathematics

Page: N.A

View: 4339

This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.
Release

Theory of Lie Groups

Author: Claude Chevalley

Publisher: Courier Dover Publications

ISBN: 0486829669

Category: Mathematics

Page: 224

View: 1187

The standard text on the subject for many years, this introductory treatment covers classical linear groups, topological groups, manifolds, analytic groups, differential calculus of Cartan, and compact Lie groups and their representations. 1946 edition.
Release

The Classical Groups

Their Invariants and Representations

Author: Hermann Weyl

Publisher: Princeton University Press

ISBN: 1400883903

Category: Mathematics

Page: 336

View: 3847

In this renowned volume, Hermann Weyl discusses the symmetric, full linear, orthogonal, and symplectic groups and determines their different invariants and representations. Using basic concepts from algebra, he examines the various properties of the groups. Analysis and topology are used wherever appropriate. The book also covers topics such as matrix algebras, semigroups, commutators, and spinors, which are of great importance in understanding the group-theoretic structure of quantum mechanics. Hermann Weyl was among the greatest mathematicians of the twentieth century. He made fundamental contributions to most branches of mathematics, but he is best remembered as one of the major developers of group theory, a powerful formal method for analyzing abstract and physical systems in which symmetry is present. In The Classical Groups, his most important book, Weyl provided a detailed introduction to the development of group theory, and he did it in a way that motivated and entertained his readers. Departing from most theoretical mathematics books of the time, he introduced historical events and people as well as theorems and proofs. One learned not only about the theory of invariants but also when and where they were originated, and by whom. He once said of his writing, "My work always tried to unite the truth with the beautiful, but when I had to choose one or the other, I usually chose the beautiful." Weyl believed in the overall unity of mathematics and that it should be integrated into other fields. He had serious interest in modern physics, especially quantum mechanics, a field to which The Classical Groups has proved important, as it has to quantum chemistry and other fields. Among the five books Weyl published with Princeton, Algebraic Theory of Numbers inaugurated the Annals of Mathematics Studies book series, a crucial and enduring foundation of Princeton's mathematics list and the most distinguished book series in mathematics.
Release

Principal Bundles

The Classical Case

Author: Stephen Bruce Sontz

Publisher: Springer

ISBN: 331914765X

Category: Science

Page: 280

View: 8880

This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.
Release

Noncommutative Geometry

Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 3-9, 2000

Author: Alain Connes,Joachim Cuntz,Erik G. Guentner,Nigel Higson,Jerome Kaminker,John E. Roberts

Publisher: Springer Science & Business Media

ISBN: 9783540203575

Category: Mathematics

Page: 356

View: 2769

Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Release

Global Analysis

Papers in Honor of K. Kodaira (PMS-29)

Author: Donald Clayton Spencer,Shokichi Iyanaga

Publisher: Princeton University Press

ISBN: 1400871239

Category: Mathematics

Page: 424

View: 7626

Global analysis describes diverse yet interrelated research areas in analysis and algebraic geometry, particularly those in which Kunihiko Kodaira made his most outstanding contributions to mathematics. The eminent contributors to this volume, from Japan, the United States, and Europe, have prepared original research papers that illustrate the progress and direction of current research in complex variables and algebraic and differential geometry. The authors investigate, among other topics, complex manifolds, vector bundles, curved 4-dimensional space, and holomorphic mappings. Bibliographies facilitate further reading in the development of the various studies. Originally published in 1970. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Release

A Primer on Mapping Class Groups

Author: Benson Farb,Dan Margalit

Publisher: Princeton University Press

ISBN: 0691147949

Category: MATHEMATICS

Page: 472

View: 1939

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
Release

Understanding Topology

A Practical Introduction

Author: Shaun V. Ault

Publisher: JHU Press

ISBN: 142142407X

Category: Mathematics

Page: 416

View: 4287

"Topology can present significant challenges for undergraduate students of mathematics and the sciences. 'Understanding topology' aims to change that. The perfect introductory topology textbook, 'Understanding topology' requires only a knowledge of calculus and a general familiarity with set theory and logic. Equally approachable and rigorous, the book's clear organization, worked examples, and concise writing style support a thorough understanding of basic topological principles. Professor Shaun V. Ault's unique emphasis on fascinating applications, from chemical dynamics to determining the shape of the universe, will engage students in a way traditional topology textbooks do not"--
Release

Shape in Picture

Mathematical Description of Shape in Grey-level Images

Author: O Ying Lie,Alexander Toet,David Foster,Henk J.A.M. Heijmans,Peter Meer

Publisher: Springer Science & Business Media

ISBN: 366203039X

Category: Computers

Page: 682

View: 7522

The fields of image analysis, computer vision, and artificial intelligence all make use of descriptions of shape in grey-level images. Most existing algorithms for the automatic recognition and classification of particular shapes have been devel oped for specific purposes, with the result that these methods are often restricted in their application. The use of advanced and theoretically well-founded math ematical methods should lead to the construction of robust shape descriptors having more general application. Shape description can be regarded as a meeting point of vision research, mathematics, computing science, and the application fields of image analy sis, computer vision, and artificial intelligence. The NATO Advanced Research Workshop "Shape in Picture" was organised with a twofold objective: first, it should provide all participants with an overview of relevant developments in these different disciplines; second, it should stimulate researchers to exchange original results and ideas across the boundaries of these disciplines. This book comprises a widely drawn selection of papers presented at the workshop, and many contributions have been revised to reflect further progress in the field. The focus of this collection is on mathematical approaches to the construction of shape descriptions from grey-level images. The book is divided into five parts, each devoted to a different discipline. Each part contains papers that have tutorial sections; these are intended to assist the reader in becoming acquainted with the variety of approaches to the problem.
Release