The Quantum Labyrinth

How Richard Feynman and John Wheeler Revolutionized Time and Reality

Author: Paul Halpern

Publisher: Basic Books

ISBN: 0465097596

Category: Science

Page: 336

View: 3515

The story of the unlikely friendship between the two physicists who fundamentally recast the notion of time and history In 1939, Richard Feynman, a brilliant graduate of MIT, arrived in John Wheeler's Princeton office to report for duty as his teaching assistant. A lifelong friendship and enormously productive collaboration was born, despite sharp differences in personality. The soft-spoken Wheeler, though conservative in appearance, was a raging nonconformist full of wild ideas about the universe. The boisterous Feynman was a cautious physicist who believed only what could be tested. Yet they were complementary spirits. Their collaboration led to a complete rethinking of the nature of time and reality. It enabled Feynman to show how quantum reality is a combination of alternative, contradictory possibilities, and inspired Wheeler to develop his landmark concept of wormholes, portals to the future and past. Together, Feynman and Wheeler made sure that quantum physics would never be the same again.
Release

The Quantum Labyrinth

How Richard Feynman and John Wheeler Revolutionized Time and Reality

Author: Paul Halpern

Publisher: Basic Books

ISBN: 9781541672987

Category: Science

Page: 336

View: 6237

The story of the unlikely friendship between the two physicists who fundamentally recast the notion of time and history In 1939, Richard Feynman, a brilliant graduate of MIT, arrived in John Wheeler's Princeton office to report for duty as his teaching assistant. A lifelong friendship and enormously productive collaboration was born, despite sharp differences in personality. The soft-spoken Wheeler, though conservative in appearance, was a raging nonconformist full of wild ideas about the universe. The boisterous Feynman was a cautious physicist who believed only what could be tested. Yet they were complementary spirits. Their collaboration led to a complete rethinking of the nature of time and reality. It enabled Feynman to show how quantum reality is a combination of alternative, contradictory possibilities, and inspired Wheeler to develop his landmark concept of wormholes, portals to the future and past. Together, Feynman and Wheeler made sure that quantum physics would never be the same again.
Release

The Quantum Labyrinth

How Richard Feynman and John Wheeler Revolutionized Time and Reality

Author: Paul Halpern

Publisher: Hachette UK

ISBN: 0465097596

Category: Science

Page: 336

View: 1337

The story of the unlikely friendship between the two physicists who fundamentally recast the notion of time and history In 1939, Richard Feynman, a brilliant graduate of MIT, arrived in John Wheeler's Princeton office to report for duty as his teaching assistant. A lifelong friendship and enormously productive collaboration was born, despite sharp differences in personality. The soft-spoken Wheeler, though conservative in appearance, was a raging nonconformist full of wild ideas about the universe. The boisterous Feynman was a cautious physicist who believed only what could be tested. Yet they were complementary spirits. Their collaboration led to a complete rethinking of the nature of time and reality. It enabled Feynman to show how quantum reality is a combination of alternative, contradictory possibilities, and inspired Wheeler to develop his landmark concept of wormholes, portals to the future and past. Together, Feynman and Wheeler made sure that quantum physics would never be the same again.
Release

Energy, the Subtle Concept

The discovery of Feynman's blocks from Leibniz to Einstein

Author: Jennifer Coopersmith

Publisher: OUP Oxford

ISBN: 0191057509

Category: Science

Page: 432

View: 3130

Energy is at the heart of physics and of huge importance to society and yet no book exists specifically to explain it, and in simple terms. In tracking the history of energy, this book is filled with the thrill of the chase, the mystery of smoke and mirrors, and presents a fascinating human-interest story. Moreover, following the history provides a crucial aid to understanding: this book explains the intellectual revolutions required to comprehend energy, revolutions as profound as those stemming from Relativity and Quantum Theory. Texts by Descartes, Leibniz, Bernoulli, d'Alembert, Lagrange, Hamilton, Boltzmann, Clausius, Carnot and others are made accessible, and the engines of Watt and Joule are explained. Many fascinating questions are covered, including: - Why just kinetic and potential energies - is one more fundamental than the other? - What are heat, temperature and action? - What is the Hamiltonian? - What have engines to do with physics? - Why did the steam-engine evolve only in England? - Why S=klogW works and why temperature is IT. Using only a minimum of mathematics, this book explains the emergence of the modern concept of energy, in all its forms: Hamilton's mechanics and how it shaped twentieth-century physics, and the meaning of kinetic energy, potential energy, temperature, action, and entropy. It is as much an explanation of fundamental physics as a history of the fascinating discoveries that lie behind our knowledge today.
Release

Einstein's Dice and Schršdinger's Cat

How Two Great Minds Battled Quantum Randomness to Create a Unified Theory of Physics

Author: Paul Halpern

Publisher: Basic Books

ISBN: 0465040659

Category: Science

Page: 288

View: 9469

When the fuzzy indeterminacy of quantum mechanics overthrew the orderly world of Isaac Newton, Albert Einstein and Erwin Schrödinger were at the forefront of the revolution. Neither man was ever satisfied with the standard interpretation of quantum mechanics, however, and both rebelled against what they considered the most preposterous aspect of quantum mechanics: its randomness. Einstein famously quipped that God does not play dice with the universe, and Schrödinger constructed his famous fable of a cat that was neither alive nor dead not to explain quantum mechanics but to highlight the apparent absurdity of a theory gone wrong. But these two giants did more than just criticize: they fought back, seeking a Theory of Everything that would make the universe seem sensible again. In Einstein’s Dice and Schrödinger’s Cat, physicist Paul Halpern tells the little-known story of how Einstein and Schrödinger searched, first as collaborators and then as competitors, for a theory that transcended quantum weirdness. This story of their quest—which ultimately failed—provides readers with new insights into the history of physics and the lives and work of two scientists whose obsessions drove its progress. Today, much of modern physics remains focused on the search for a Theory of Everything. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model—the closest thing we have to a unified theory— nearly complete. And while Einstein and Schrödinger failed in their attempt to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when they were wrong, Einstein and Schrödinger couldn’t help but get a great deal right.
Release

String Theory and the Scientific Method

Author: Richard Dawid

Publisher: Cambridge University Press

ISBN: 1107067588

Category: Science

Page: N.A

View: 1348

String theory has played a highly influential role in theoretical physics for nearly three decades and has substantially altered our view of the elementary building principles of the Universe. However, the theory remains empirically unconfirmed, and is expected to remain so for the foreseeable future. So why do string theorists have such a strong belief in their theory? This book explores this question, offering a novel insight into the nature of theory assessment itself. Dawid approaches the topic from a unique position, having extensive experience in both philosophy and high-energy physics. He argues that string theory is just the most conspicuous example of a number of theories in high-energy physics where non-empirical theory assessment has an important part to play. Aimed at physicists and philosophers of science, the book does not use mathematical formalism and explains most technical terms.
Release

Edge of the Universe

A Voyage to the Cosmic Horizon and Beyond

Author: Paul Halpern

Publisher: John Wiley & Sons

ISBN: 111822082X

Category: Science

Page: 240

View: 8786

An accessible look at the mysteries that lurk at the edge of the known universe and beyond The observable universe, the part we can see with telescopes, is incredibly vast. Yet recent theories suggest that there is far more to the universe than what our instruments record—in fact, it could be infinite. Colossal flows of galaxies, large empty regions called voids, and other unexplained phenomena offer clues that our own "bubble universe" could be part of a greater realm called the multiverse. How big is the observable universe? What it is made of? What lies beyond it? Was there a time before the Big Bang? Could space have unseen dimensions? In this book, physicist and science writer Paul Halpern explains what we know—and what we hope to soon find out—about our extraordinary cosmos. Explains what we know about the Big Bang, the accelerating universe, dark energy, dark flow, and dark matter to examine some of the theories about the content of the universe and why its edge is getting farther away from us faster Explores the idea that the observable universe could be a hologram and that everything that happens within it might be written on its edge Written by physicist and popular science writer Paul Halpern, whose other books include Collider: The Search for the World's Smallest Particles, and What's Science Ever Done For Us: What the Simpsons Can Teach Us About Physics, Robots, Life, and the Universe
Release

On the Inside of a Marble

From Quantum Mechanics to the Big Bang

Author: Gavin Bascom

Publisher: Springer

ISBN: 3319606905

Category: Science

Page: 107

View: 6160

Keeping in mind that we can only see the universe from the comfort of our home galaxy, Bascom begins his text by meticulously laying the necessary groundwork to understand the Big Bang’s mathematics without using any equations. He then paints a freeze-frame picture of our universe as if we had taken a three-dimensional picture with a giant camera. Within this picture, he traces forces beginning with the smallest (a single atom) to the biggest (the cosmos), keeping in mind that in this frozen moment everything further away from the observer spatially is also further away from the observer in time; that is, older. Soon a very real and very vivid image of the Big Bang appears (especially in things that are loud or hot), echoing down through time and into our everyday lives, reflected in every atom during every measurement. Then, slowly but deliberately, Bascom unfreezes this picture, ratcheting each moment from one to the next, showing us how and why quantum particles are constantly in contact with the Big Bang and why that allows the particles to pop in and out of existence from moment to moment, what a photon is, and what exactly we mean when we say that free space has energy. Whether you’re interested in the Big Bang, the weirdness of quantum mechanics, or simply enjoy thinking about the biggest, loudest, and oldest things in our universe, this book will help you question your deepest notions about time and space, while staying firmly rooted in empirical observation. Throughout the text, Bascom sidesteps traditional non-fiction modes, using colorful explanations and vivid imagery to place the reader in simultaneous contact with both the Big Bang and fundamental particles. As a result, Bascom provides the tools and language necessary to contemplate the strangeness of our universe.
Release

The Layman's Guide to Quantum Reality

Author: Jd Lovil

Publisher: Lulu.com

ISBN: 9781387348688

Category: Reference

Page: 180

View: 2832

Have you always wanted to understand Quantum Theory, but was afraid of the math? Relax. I have written this book so that you can understand the theory without all the hard to understand equations and science speak. Once you understand quantum mechanics, you can use that knowledge to take control of your life. This book has three sections. It will teach you the science, and it will transform your life. The first section covers the science and a little history. It tells you how things work. The second section covers the philosophy. It tells you why it works that way. The third section covers magic. Because the science works the way it does, your mind is able to control your quantum reality. Take control of your life and reality. Let me tell you about Quantum Theory, and show you how to use it to make your life better. Buy a copy of The Layman's Guide To Quantum Reality and find out how to control your Reality!
Release

The Theoretical Minimum

What You Need to Know to Start Doing Physics

Author: Leonard Susskind,George Hrabovsky

Publisher: Basic Books

ISBN: 0465038921

Category: Science

Page: 256

View: 4327

A Wall Street Journal Best Book of 2013 If you ever regretted not taking physics in college--or simply want to know how to think like a physicist--this is the book for you. In this bestselling introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
Release

The Quantum Story

A history in 40 moments

Author: Jim Baggott

Publisher: OUP Oxford

ISBN: 0191604291

Category: Science

Page: 496

View: 6966

The twentieth century was defined by physics. From the minds of the world's leading physicists there flowed a river of ideas that would transport mankind to the pinnacle of wonderment and to the very depths of human despair. This was a century that began with the certainties of absolute knowledge and ended with the knowledge of absolute uncertainty. It was a century in which physicists developed weapons with the capacity to destroy our reality, whilst at the same time denying us the possibility that we can ever properly comprehend it. Almost everything we think we know about the nature of our world comes from one theory of physics. This theory was discovered and refined in the first thirty years of the twentieth century and went on to become quite simply the most successful theory of physics ever devised. Its concepts underpin much of the twenty-first century technology that we have learned to take for granted. But its success has come at a price, for it has at the same time completely undermined our ability to make sense of the world at the level of its most fundamental constituents. Rejecting the fundamental elements of uncertainty and chance implied by quantum theory, Albert Einstein once famously declared that 'God does not play dice'. Niels Bohr claimed that anybody who is not shocked by the theory has not understood it. The charismatic American physicist Richard Feynman went further: he claimed that nobody understands it. This is quantum theory, and this book tells its story. Jim Baggott presents a celebration of this wonderful yet wholly disconcerting theory, with a history told in forty episodes — significant moments of truth or turning points in the theory's development. From its birth in the porcelain furnaces used to study black body radiation in 1900, to the promise of stimulating new quantum phenomena to be revealed by CERN's Large Hadron Collider over a hundred years later, this is the extraordinary story of the quantum world. Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.
Release

The Physical World

An Inspirational Tour of Fundamental Physics

Author: Nicholas Manton,Nicholas Mee

Publisher: Oxford University Press

ISBN: 0198795939

Category: Science

Page: 608

View: 2491

"It is over half a century since The Feynman lectures on physics were published. A new authoritative account of fundamental physics covering all branches of the subject is now well overdue. The physical world has been written to satisfy this need."--Back cover.
Release

Quantum Physics

What Everyone Needs to Know®

Author: Michael G. Raymer

Publisher: Oxford University Press

ISBN: 0190250747

Category: Science

Page: 224

View: 8203

Around 1900, physicists started to discover particles like electrons, protons, and neutrons, and with these discoveries believed they could predict the internal behavior of the atom. However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe. However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.
Release

Significant Figures

The Lives and Work of Great Mathematicians

Author: Ian Stewart

Publisher: Basic Books

ISBN: 0465096131

Category: Mathematics

Page: 320

View: 4551

A celebrated mathematician traces the history of math through the lives and work of twenty-five pioneering mathematicians In Significant Figures, acclaimed mathematician Ian Stewart introduces the visionaries of mathematics throughout history. Delving into the lives of twenty-five great mathematicians, Stewart examines the roles they played in creating, inventing, and discovering the mathematics we use today. Through these short biographies, we get acquainted with the history of mathematics from Archimedes to Benoit Mandelbrot, and learn about those too often left out of the cannon, such as Muhammad ibn Musa al-Khwarizmi (c. 780-850), the creator of algebra, and Augusta Ada King (1815-1852), Countess of Lovelace, the world's first computer programmer. Tracing the evolution of mathematics over the course of two millennia, Significant Figures will educate and delight aspiring mathematicians and experts alike.
Release

Mass

The quest to understand matter from Greek atoms to quantum fields

Author: Jim Baggott

Publisher: Oxford University Press

ISBN: 0191077828

Category: Science

Page: 320

View: 3855

Everything around us is made of 'stuff', from planets, to books, to our own bodies. Whatever it is, we call it matter or material substance. It is solid; it has mass. But what is matter, exactly? We are taught in school that matter is not continuous, but discrete. As a few of the philosophers of ancient Greece once speculated, nearly two and a half thousand years ago, matter comes in 'lumps', and science has relentlessly peeled away successive layers of matter to reveal its ultimate constituents. Surely, we can't keep doing this indefinitely. We imagine that we should eventually run up against some kind of ultimately fundamental, indivisible type of stuff, the building blocks from which everything in the Universe is made. The English physicist Paul Dirac called this 'the dream of philosophers'. But science has discovered that the foundations of our Universe are not as solid or as certain and dependable as we might have once imagined. They are instead built from ghosts and phantoms, of a peculiar quantum kind. And, at some point on this exciting journey of scientific discovery, we lost our grip on the reassuringly familiar concept of mass. How did this happen? How did the answers to our questions become so complicated and so difficult to comprehend? In Mass Jim Baggott explains how we come to find ourselves here, confronted by a very different understanding of the nature of matter, the origin of mass, and its implications for our understanding of the material world. Ranging from the Greek philosophers Leucippus and Democritus, and their theories of atoms and void, to the development of quantum field theory and the discovery of a Higgs boson-like particle, he explores our changing understanding of the nature of matter, and the fundamental related concept of mass.
Release

The Little Book of Black Holes

Author: Steven S. Gubser,Frans Pretorius

Publisher: Princeton University Press

ISBN: 1400888298

Category: Science

Page: 200

View: 9377

Dive into a mind-bending exploration of the physics of black holes Black holes, predicted by Albert Einstein’s general theory of relativity more than a century ago, have long intrigued scientists and the public with their bizarre and fantastical properties. Although Einstein understood that black holes were mathematical solutions to his equations, he never accepted their physical reality—a viewpoint many shared. This all changed in the 1960s and 1970s, when a deeper conceptual understanding of black holes developed just as new observations revealed the existence of quasars and X-ray binary star systems, whose mysterious properties could be explained by the presence of black holes. Black holes have since been the subject of intense research—and the physics governing how they behave and affect their surroundings is stranger and more mind-bending than any fiction. After introducing the basics of the special and general theories of relativity, this book describes black holes both as astrophysical objects and theoretical “laboratories” in which physicists can test their understanding of gravitational, quantum, and thermal physics. From Schwarzschild black holes to rotating and colliding black holes, and from gravitational radiation to Hawking radiation and information loss, Steven Gubser and Frans Pretorius use creative thought experiments and analogies to explain their subject accessibly. They also describe the decades-long quest to observe the universe in gravitational waves, which recently resulted in the LIGO observatories’ detection of the distinctive gravitational wave “chirp” of two colliding black holes—the first direct observation of black holes’ existence. The Little Book of Black Holes takes readers deep into the mysterious heart of the subject, offering rare clarity of insight into the physics that makes black holes simple yet destructive manifestations of geometric destiny.
Release

Fast Car Physics

Author: Chuck Edmondson

Publisher: JHU Press

ISBN: 9781421401140

Category: Science

Page: 248

View: 6173

From selecting shifting points to load transfer in car control and beyond, Fast Car Physics is the ideal source to consult before buckling up and cinching down the belts on your racing harness.
Release

Quantum Fuzz

The Strange True Makeup of Everything Around Us

Author: Michael S. Walker

Publisher: Prometheus Books

ISBN: 163388239X

Category: Quantum theory

Page: 448

View: 5348

"A lucid introduction to the basics of quantum physics for the lay reader, showing how much the scientific understanding of reality has changed in the last century and how important this science is to technology, the economy, and modern life"--
Release

The Black Book of Quantum Chromodynamics

A Primer for the LHC Era

Author: John Campbell,Joey Huston,Frank Krauss

Publisher: Oxford University Press

ISBN: 0199652740

Category: Science

Page: 768

View: 6443

The Black Book of Quantum Chromodynamics is an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The book offers the reader an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier. It assumes a working knowledge of quantum field theory at the level of introductory textbooks used for advanced undergraduate or in standard postgraduate lectures. The book expands this knowledge with an intuitive understanding of relevant physical concepts, an introduction to modern techniques, and their application to the phenomenology of the strong interaction at the highest energies. Aimed at graduate students and researchers, it also serves as a comprehensive reference for LHC experimenters and theorists. This book offers an exhaustive presentation of the technologies developed and used by practitioners in the field of fixed-order perturbation theory and an overview of results relevant for the ongoing research programme at the LHC. It includes an in-depth description of various analytic resummation techniques, which form the basis for our understanding of the QCD radiation pattern and how strong production processes manifest themselves in data, and a concise discussion of numerical resummation through parton showers, which form the basis of event generators for the simulation of LHC physics, and their matching and merging with fixed-order matrix elements. It also gives a detailed presentation of the physics behind the parton distribution functions, which are a necessary ingredient for every calculation relevant for physics at hadron colliders such as the LHC, and an introduction to non-perturbative aspects of the strong interaction, including inclusive observables such as total and elastic cross sections, and non-trivial effects such as multiple parton interactions and hadronization. The book concludes with a useful overview contextualising data from previous experiments such as the Tevatron and the Run I of the LHC which have shaped our understanding of QCD at hadron colliders.
Release

The Last Man Who Knew Everything

The Life and Times of Enrico Fermi, Father of the Nuclear Age

Author: David N. Schwartz

Publisher: Basic Books

ISBN: 0465093124

Category: Biography & Autobiography

Page: 480

View: 7952

The definitive biography of the brilliant, charismatic, and very human physicist and innovator Enrico Fermi In 1942, a team at the University of Chicago achieved what no one had before: a nuclear chain reaction. At the forefront of this breakthrough stood Enrico Fermi. Straddling the ages of classical physics and quantum mechanics, equally at ease with theory and experiment, Fermi truly was the last man who knew everything--at least about physics. But he was also a complex figure who was a part of both the Italian Fascist Party and the Manhattan Project, and a less-than-ideal father and husband who nevertheless remained one of history's greatest mentors. Based on new archival material and exclusive interviews, The Last Man Who Knew Everything lays bare the enigmatic life of a colossus of twentieth century physics.
Release