The Geometrical Language of Continuum Mechanics

Author: Marcelo Epstein

Publisher: Cambridge University Press

ISBN: 113949046X

Category: Science

Page: N.A

View: 9530

Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications.
Release

Geometrical Foundations of Continuum Mechanics

An Application to First- and Second-Order Elasticity and Elasto-Plasticity

Author: Paul Steinmann

Publisher: Springer

ISBN: 3662464608

Category: Science

Page: 517

View: 4905

This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity. After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear continuum mechanics. Together with the discussion on the integrability conditions for the distortions and double-distortions, the concepts of dislocation, disclination and point-defect density tensors are introduced. For concreteness, after touching on nonlinear fir st- and second-order elasticity, a detailed discussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity is given. The discussion naturally culminates in a comprehensive set of different types of dislocation, disclination and point-defect density tensors. It is argued, that these can potentially be used to model densities of geometrically necessary defects and the accompanying hardening in crystalline materials. Eventually Part IV summarizes the above findings on integrability whereby distinction is made between the straightforward conditions for the distortion and the double-distortion being integrable and the more involved conditions for the strain (metric) and the double-strain (connection) being integrable. The book addresses readers with an interest in continuum modelling of solids from engineering and the sciences alike, whereby a sound knowledge of tensor calculus and continuum mechanics is required as a prerequisite.
Release

Non-Classical Continuum Mechanics

A Dictionary

Author: Gérard A. Maugin

Publisher: Springer

ISBN: 9811024340

Category: Technology & Engineering

Page: 259

View: 741

This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, ever y entry is followed by a cross-reference to other related subject entries in the dictionary.
Release

Continuum Mechanics Through the Twentieth Century

A Concise Historical Perspective

Author: Gerard A Maugin

Publisher: Springer Science & Business Media

ISBN: 9400763530

Category: Technology & Engineering

Page: 314

View: 1134

This overview of the development of continuum mechanics throughout the twentieth century is unique and ambitious. Utilizing a historical perspective, it combines an exposition on the technical progress made in the field and a marked interest in the role played by remarkable individuals and scientific schools and institutions on a rapidly evolving social background. It underlines the newly raised technical questions and their answers, and the ongoing reflections on the bases of continuum mechanics associated, or in competition, with other branches of the physical sciences, including thermodynamics. The emphasis is placed on the development of a more realistic modeling of deformable solids and the exploitation of new mathematical tools. The book presents a balanced appraisal of advances made in various parts of the world. The author contributes his technical expertise, personal recollections, and international experience to this general overview, which is very informative albeit concise.
Release

Geometric Continuum Mechanics and Induced Beam Theories

Author: Simon R. Eugster

Publisher: Springer

ISBN: 3319164953

Category: Technology & Engineering

Page: 146

View: 4876

This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.
Release

Mathematical Tools for Physicists

Author: Michael Grinfeld

Publisher: John Wiley & Sons

ISBN: 3527684271

Category: Science

Page: 632

View: 9592

The new edition is significantly updated and expanded. This unique collection of review articles, ranging from fundamental concepts up to latest applications, contains individual contributions written by renowned experts in the relevant fields. Much attention is paid to ensuring fast access to the information, with each carefully reviewed article featuring cross-referencing, references to the most relevant publications in the field, and suggestions for further reading, both introductory as well as more specialized. While the chapters on group theory, integral transforms, Monte Carlo methods, numerical analysis, perturbation theory, and special functions are thoroughly rewritten, completely new content includes sections on commutative algebra, computational algebraic topology, differential geometry, dynamical systems, functional analysis, graph and network theory, PDEs of mathematical physics, probability theory, stochastic differential equations, and variational methods.
Release

Continuum Mechanics

Author: D. S. Chandrasekharaiah,Lokenath Debnath

Publisher: Elsevier

ISBN: 1483294684

Category: Science

Page: 595

View: 8195

A detailed and self-contained text written for beginners, Continuum Mechanics offers concise coverage of the basic concepts, general principles, and applications of continuum mechanics. Without sacrificing rigor, the clear and simple mathematical derivations are made accessible to a large number of students with little or no previous background in solid or fluid mechanics. With the inclusion of more than 250 fully worked-out examples and 500 worked exercises, this book is certain to become a standard introductory text for students as well as an indispensable reference for professionals. Key Features * Provides a clear and self-contained treatment of vectors, matrices, and tensors specifically tailored to the needs of continuum mechanics * Develops the concepts and principles common to all areas in solid and fluid mechanics with a common notation and terminology * Covers the fundamentals of elasticity theory and fluid mechanics
Release

Variational Principles of Continuum Mechanics

I. Fundamentals

Author: Victor Berdichevsky

Publisher: Springer Science & Business Media

ISBN: 354088467X

Category: Technology & Engineering

Page: 586

View: 7228

Thereareabout500booksonvariationalprinciples. Theyareconcernedmostlywith the mathematical aspects of the topic. The major goal of this book is to discuss the physical origin of the variational principles and the intrinsic interrelations between them. For example, the Gibbs principles appear not as the rst principles of the theory of thermodynamic equilibrium but as a consequence of the Einstein formula for thermodynamic uctuations. The mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for direct study of variational problems. Thebookisacompletelyrewrittenversionoftheauthor’smonographVariational Principles of Continuum Mechanics which appeared in Russian in 1983. I have been postponing the English translation because I wished to include the variational pr- ciples of irreversible processes in the new edition. Reaching an understanding of this subject took longer than I expected. In its nal form, this book covers all aspects of the story. The part concerned with irreversible processes is tiny, but it determines the accents put on all the results presented. The other new issues included in the book are: entropy of microstructure, variational principles of vortex line dynamics, va- ational principles and integration in functional spaces, some stochastic variational problems, variational principle for probability densities of local elds in composites with random structure, variational theory of turbulence; these topics have not been covered previously in monographic literature.
Release

Einführung in die Mechanik und Symmetrie

Eine grundlegende Darstellung klassischer mechanischer Systeme

Author: Jerrold E. Marsden,Tudor S. Ratiu

Publisher: Springer-Verlag

ISBN: 3642568599

Category: Mathematics

Page: 598

View: 1944

Symmetrie spielt in der Mechanik eine große Rolle. Dieses Buch beschreibt die Entwicklung zugrunde liegender Theorien. Besonderes Gewicht wird der Symmetrie beigemessen. Ursache hierfür sind Entwicklungen im Bereich dynamischer Systeme, der Einsatz geometrischer Verfahren und neue Anwendungen. Dieses Lehrbuch stellt Grundlagen bereit und beschreibt zahlreiche spezifische Anwendungen. Interessant für Physiker und Ingenieure. Ausgewählte Beispiele, Anwendungen, aktuelle Verfahren/Techniken veranschaulichen die Theorie.
Release

Introduction to Tensor Analysis and the Calculus of Moving Surfaces

Author: Pavel Grinfeld

Publisher: Springer Science & Business Media

ISBN: 1461478677

Category: Mathematics

Page: 302

View: 7967

This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
Release

Computational Contact Mechanics

Geometrically Exact Theory for Arbitrary Shaped Bodies

Author: Alexander Konyukhov,Karl Schweizerhof

Publisher: Springer Science & Business Media

ISBN: 3642315313

Category: Technology & Engineering

Page: 446

View: 6864

This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.
Release

Variational Principles of Continuum Mechanics with Engineering Applications

Introduction to Optimal Design Theory

Author: V. Komkov

Publisher: Springer Science & Business Media

ISBN: 9789027726391

Category: Mathematics

Page: 276

View: 9403

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Release

Tensoranalysis

Author: Heinz Schade,Klaus Neemann

Publisher: Walter de Gruyter

ISBN: 3110213214

Category: Science

Page: 462

View: 8463

Dieses Lehrbuch stellt eine umfassende und leicht verständliche Einführung in die Tensoranalysis dar, die hier als Oberbegriff von klassischer Tensoranalysis und Tensoralgebra zu verstehen ist und die in vielen Anwendungen der Physik und der Ingenieurwissenschaften benötigt wird. Es vermittelt die nötigen algebraischen Hilfsmittel und enthält zahlreiche Übungsaufgaben mit Lösungen, so dass es sich auch für ein Selbststudium eignet.
Release

Principles of Engineering Mechanics

Kinematics — The Geometry of Motion

Author: Millard F. Beatty Jr.

Publisher: Springer Science & Business Media

ISBN: 9780306421310

Category: Technology & Engineering

Page: 402

View: 5127

Separation of the elements of classical mechanics into kinematics and dynamics is an uncommon tutorial approach, but the author uses it to advantage in this two-volume set. Students gain a mastery of kinematics first – a solid foundation for the later study of the free-body formulation of the dynamics problem. A key objective of these volumes, which present a vector treatment of the principles of mechanics, is to help the student gain confidence in transforming problems into appropriate mathematical language that may be manipulated to give useful physical conclusions or specific numerical results. In the first volume, the elements of vector calculus and the matrix algebra are reviewed in appendices. Unusual mathematical topics, such as singularity functions and some elements of tensor analysis, are introduced within the text. A logical and systematic building of well-known kinematic concepts, theorems, and formulas, illustrated by examples and problems, is presented offering insights into both fundamentals and applications. Problems amplify the material and pave the way for advanced study of topics in mechanical design analysis, advanced kinematics of mechanisms and analytical dynamics, mechanical vibrations and controls, and continuum mechanics of solids and fluids. Volume I of Principles of Engineering Mechanics provides the basis for a stimulating and rewarding one-term course for advanced undergraduate and first-year graduate students specializing in mechanics, engineering science, engineering physics, applied mathematics, materials science, and mechanical, aerospace, and civil engineering. Professionals working in related fields of applied mathematics will find it a practical review and a quick reference for questions involving basic kinematics.
Release

Vectors, Tensors and the Basic Equations of Fluid Mechanics

Author: Rutherford Aris

Publisher: Courier Corporation

ISBN: 048613489X

Category: Mathematics

Page: 320

View: 3963

Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.
Release