Singular Perturbation Theory

Mathematical and Analytical Techniques with Applications to Engineering

Author: R.S. Johnson

Publisher: Springer Science & Business Media

ISBN: 9780387232171

Category: Mathematics

Page: 292

View: 9899

The importance of mathematics in the study of problems arising from the real world, and the increasing success with which it has been used to model situations ranging from the purely deterministic to the stochastic, is well established. The purpose of the set of volumes to which the present one belongs is to make available authoritative, up to date, and self-contained accounts of some of the most important and useful of these analytical approaches and techniques. Each volume provides a detailed introduction to a specific subject area of current importance that is summarized below, and then goes beyond this by reviewing recent contributions, and so serving as a valuable reference source. The progress in applicable mathematics has been brought about by the extension and development of many important analytical approaches and techniques, in areas both old and new, frequently aided by the use of computers without which the solution of realistic problems would otherwise have been impossible.
Release

Approximate Analytical Methods for Solving Ordinary Differential Equations

Author: T.S.L Radhika,T. K.V. Iyengar,T. Raja Rani

Publisher: CRC Press

ISBN: 1466588160

Category: Mathematics

Page: 200

View: 3250

Approximate Analytical Methods for Solving Ordinary Differential Equations (ODEs) is the first book to present all of the available approximate methods for solving ODEs, eliminating the need to wade through multiple books and articles. It covers both well-established techniques and recently developed procedures, including the classical series solution method, diverse perturbation methods, pioneering asymptotic methods, and the latest homotopy methods. The book is suitable not only for mathematicians and engineers but also for biologists, physicists, and economists. It gives a complete description of the methods without going deep into rigorous mathematical aspects. Detailed examples illustrate the application of the methods to solve real-world problems. The authors introduce the classical power series method for solving differential equations before moving on to asymptotic methods. They next show how perturbation methods are used to understand physical phenomena whose mathematical formulation involves a perturbation parameter and explain how the multiple-scale technique solves problems whose solution cannot be completely described on a single timescale. They then describe the Wentzel, Kramers, and Brillown (WKB) method that helps solve both problems that oscillate rapidly and problems that have a sudden change in the behavior of the solution function at a point in the interval. The book concludes with recent nonperturbation methods that provide solutions to a much wider class of problems and recent analytical methods based on the concept of homotopy of topology.
Release

Theory of Stochastic Differential Equations with Jumps and Applications

Mathematical and Analytical Techniques with Applications to Engineering

Author: Rong SITU

Publisher: Springer Science & Business Media

ISBN: 0387251758

Category: Mathematics

Page: 434

View: 4027

Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.
Release

DCDS-A

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 4843

Release

Inverse Problems

Mathematical and Analytical Techniques with Applications to Engineering

Author: Alexander G. Ramm

Publisher: Springer Science & Business Media

ISBN: 0387232184

Category: Mathematics

Page: 442

View: 870

Inverse Problems is a monograph which contains a self-contained presentation of the theory of several major inverse problems and the closely related results from the theory of ill-posed problems. The book is aimed at a large audience which include graduate students and researchers in mathematical, physical, and engineering sciences and in the area of numerical analysis.
Release

Engineering Mathematics II

Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization

Author: Sergei Silvestrov,Milica Rančić

Publisher: Springer

ISBN: 3319421050

Category: Computers

Page: 436

View: 2991

This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. It addresses mathematical methods of algebra, applied matrix analysis, operator analysis, probability theory and stochastic processes, geometry and computational methods in network analysis, data classification, ranking and optimisation. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The book consists of contributed chapters covering research developed as a result of a focused international seminar series on mathematics and applied mathematics and a series of three focused international research workshops on engineering mathematics organised by the Research Environment in Mathematics and Applied Mathematics at Mälardalen University from autumn 2014 to autumn 2015: the International Workshop on Engineering Mathematics for Electromagnetics and Health Technology; the International Workshop on Engineering Mathematics, Algebra, Analysis and Electromagnetics; and the 1st Swedish-Estonian International Workshop on Engineering Mathematics, Algebra, Analysis and Applications. It serves as a source of inspiration for a broad spectrum of researchers and research students in applied mathematics, as well as in the areas of applications of mathematics considered in the book.
Release

Singular-Perturbation Theory

An Introduction with Applications

Author: Donald R. Smith

Publisher: Cambridge University Press

ISBN: 9780521300421

Category: Mathematics

Page: 500

View: 1795

Introduction to singular perturbation problems. Since the nature of the nonuniformity can vary from case to case, the author considers and solves a variety of problems, mostly for ordinary differential equations.
Release

Introduction to Asymptotic Methods

Author: David Y. Gao,Vadim A. Krysko

Publisher: CRC Press

ISBN: 9781420011739

Category: Mathematics

Page: 272

View: 5835

Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important methods of singular perturbations within the scope of application of differential equations. The authors take a challenging and original approach based on the integrated mathematical-analytical treatment of various objects taken from interdisciplinary fields of mechanics, physics, and applied mathematics. This new hybrid approach will lead to results that cannot be obtained by standard theories in the field. Emphasizing fundamental elements of the mathematical modeling process, the book provides comprehensive coverage of asymptotic approaches, regular and singular perturbations, one-dimensional non-stationary non-linear waves, Padé approximations, oscillators with negative Duffing type stiffness, and differential equations with discontinuous nonlinearities. The book also offers a method of construction for canonical variables transformation in parametric form along with a number of examples and applications. The book is applications oriented and features results and literature citations that have not been seen in the Western Scientific Community. The authors emphasize the dynamics of the development of perturbation methods and present the development of ideas associated with this wide field of research.
Release

Quasi-static State Analysis of Differential, Difference, Integral, and Gradient Systems

Author: F. C. Hoppensteadt

Publisher: American Mathematical Soc.

ISBN: 0821852698

Category: Mathematics

Page: 163

View: 7034

This book is based on a course on advanced topics in differential equations given in Spring 2010 at the Courant Institute of Mathematical Sciences. It describes aspects of mathematical modeling, analysis, computer simulation, and visualization in the mathematical sciences and engineering that involve singular perturbations. There is a large literature devoted to singular perturbation methods for ordinary and partial differential equations, but there are not many studies that deal with difference equations, Volterra integral equations, and purely nonlinear gradient systems where there is no dominant linear part. Designed for a one-semester course for students in applied mathematics, it is the purpose of this book to present sufficient rigorous methods and examples to position the reader to investigate singular perturbation problems in such equations. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.|This book is based on a course on advanced topics in differential equations given in Spring 2010 at the Courant Institute of Mathematical Sciences. It describes aspects of mathematical modeling, analysis, computer simulation, and visualization in the mathematical sciences and engineering that involve singular perturbations. There is a large literature devoted to singular perturbation methods for ordinary and partial differential equations, but there are not many studies that deal with difference equations, Volterra integral equations, and purely nonlinear gradient systems where there is no dominant linear part. Designed for a one-semester course for students in applied mathematics, it is the purpose of this book to present sufficient rigorous methods and examples to position the reader to investigate singular perturbation problems in such equations. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Release

Advanced Mathematical Methods for Scientists and Engineers I

Asymptotic Methods and Perturbation Theory

Author: Carl M. Bender,Steven A. Orszag

Publisher: Springer Science & Business Media

ISBN: 9780387989310

Category: Mathematics

Page: 593

View: 2608

This book gives a clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. These methods allow one to analyze physics and engineering problems that may not be solvable in closed form. The presentation provides insights that will be useful in approaching new problems.
Release

Modeling Uncertainty

An Examination of Stochastic Theory, Methods, and Applications

Author: Moshe Dror,Pierre L'Ecuyer,Ferenc Szidarovszky

Publisher: Springer Science & Business Media

ISBN: 9780792374633

Category: Business & Economics

Page: 770

View: 2977

Writing in honour of Sid Yakowitz, 50 internationally known scholars have collectively contributed 30 papers on modelling uncertainty to this volume. These include papers with a theoretical emphasis and others that focus on applications.
Release

Asymptotic Analysis and the Numerical Solution of Partial Differential Equations

Author: Hans G. Kaper,Marc Garbey

Publisher: CRC Press

ISBN: 9780585319674

Category: Mathematics

Page: 286

View: 4549

Integrates two fields generally held to be incompatible, if not downright antithetical, in 16 lectures from a February 1990 workshop at the Argonne National Laboratory, Illinois. The topics, of interest to industrial and applied mathematicians, analysts, and computer scientists, include singular per
Release

Applied mathematics and modeling for chemical engineers

Author: Richard G. Rice,D. Do Duong

Publisher: John Wiley & Sons Inc

ISBN: 9780471303770

Category: Mathematics

Page: 706

View: 6418

Bridges the gap between classical analysis and modern applications. Following the chapter on the model building stage, it introduces traditional techniques for solving ordinary differential equations, adding new material on approximate solution methods such as perturbation techniques and elementary numerical solutions. Also includes analytical methods to deal with important classes of finite-difference equations. The last half discusses numerical solution techniques and partial differential equations.
Release

Courses and Degrees

Author: Stanford University

Publisher: N.A

ISBN: N.A

Category:

Page: N.A

View: 3553

Release

Nonlinear Time Scale Systems in Standard and Nonstandard Forms

Analysis and Control

Author: Anshu Narang-Siddarth,John Valasek

Publisher: SIAM

ISBN: 1611973341

Category: Mathematics

Page: 219

View: 8820

This book introduces key concepts for systematically controlling engineering systems that possess interacting phenomena occurring at widely different speeds. The aim is to present the reader with control techniques that extend the benefits of model reduction of singular perturbation theory to a larger class of nonlinear dynamical systems. New results and relevant background are presented through insightful examples that cover a wide range of applications from different branches of engineering. This book is unique because it: presents a new perspective on existing control methods and thus broadens their application to a larger class of nonlinear dynamical systems; discusses general rather than problem-specific developments to certain applications or disciplines in order to provide control engineers with useful analytical tools ; addresses new control problems using singular perturbation methods, including closed-form results for control of nonminimum phase systems.
Release

Applied Mathematics in Aerospace Science and Engineering

Author: Angelo Miele,Attilio Salvetti

Publisher: Springer Science & Business Media

ISBN: 147579259X

Category: Technology & Engineering

Page: 514

View: 4616

This book contains the proceedings ofthe meeting on "Applied Mathematics in the Aerospace Field," held in Erice, Sicily, Italy from September 3 to September 10, 1991. The occasion of the meeting was the 12th Course of the School of Mathematics "Guido Stampacchia," directed by Professor Franco Giannessi of the University of Pisa. The school is affiliated with the International Center for Scientific Culture "Ettore Majorana," which is directed by Professor Antonino Zichichi of the University of Bologna. The objective of the course was to give a perspective on the state-of the-art and research trends concerning the application of mathematics to aerospace science and engineering. The course was structured with invited lectures and seminars concerning fundamental aspects of differential equa tions, mathematical programming, optimal control, numerical methods, per turbation methods, and variational methods occurring in flight mechanics, astrodynamics, guidance, control, aircraft design, fluid mechanics, rarefied gas dynamics, and solid mechanics. The book includes 20 chapters by 23 contributors from the United States, Germany, and Italy and is intended to be an important reference work on the application of mathematics to the aerospace field. It reflects the belief of the course directors that strong interaction between mathematics and engineering is beneficial, indeed essential, to progresses in both areas.
Release

Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition

Author: N.A

Publisher: ScholarlyEditions

ISBN: 1464965307

Category: Mathematics

Page: 741

View: 5572

Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Calculus, Mathematical Analysis, and Nonlinear Research. The editors have built Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Calculus, Mathematical Analysis, and Nonlinear Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Release